Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Multi-label Classification Framework Using the Covering Based Decision Table

  • Conference paper
  • First Online:
Recent Challenges in Intelligent Information and Database Systems (ACIIDS 2022)

Abstract

Multi-label classification (MLC) has recently drawn much attention thanks to its usefulness and omnipresence in real-world applications, in which objects may be characterized by more than one labels. One of the challenges in MLC is to determine the relationship between the labels due to the fact that there is not any assumptions of the independence between labels, and there is not any information and knowledge about these relationships in a training dataset. Recently, many researches have focused on exploiting these label relationships to enhance the performance of the classification, however there have not many of them using the covering rough set. This paper propose a multi-label classification algorithm named CDTML, based on ML-KNN algorithm, using covering based decision table which exploits the relationship between labels to enhance the performance of the multi-label classifier. The experimental results on serveral dataset of Enron, Medical and a Vietnamese dataset of hotel reviews shown the effectiveness of the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Elisseeff, A., Weston, J.: A kernel method for multi-labelled classification. NIPS 2001, 681–687 (2001)

    Google Scholar 

  2. Rousu, J., Saunders, C., Szedmák, S., Shawe-Taylor, J.: Kernel-basedlearningofhierarchical multi-label classification models. J. Mach. Learn. Res. 7, 1601–1626 (2006)

    MathSciNet  MATH  Google Scholar 

  3. Silla, J.C.N., Freitas,A.A.:Asurveyofhierarchicalclassificationacrossdifferentapplication domains. Data Min. Knowl. Discov. (DATAMINE) 22(1–2), 31–72 (2011)

    Google Scholar 

  4. Tsoumakas, G., Katakis, I., Vlahavas, I.P.: Mining multi-label data. Data Min. Knowl. Discov. Handb. 2010, 667–685 (2010)

    Google Scholar 

  5. Trohidis, K., Tsoumakas, G., Kalliris, G., Vlahavas, I.P.: Multi-label classification of music into emotions. ISMIR 2008, 325–330 (2008)

    Google Scholar 

  6. Zhang, M.-L., Zhou, Z.-H.: ML-KNN: a lazy learning approach to multi-label learning. Pattern Recognit. (PR) 40(7), 2038–2048 (2007)

    Article  MATH  Google Scholar 

  7. http://mulan.sourceforge.net/datasets-mlc.html

  8. Tsoumakas, G., Katakis, I., Vlahavas, I.P.: Mining multi-label data. In: Maimon, O., Rokach, L., (eds.) Data Mining and Knowledge Discovery Handbook, pp. 667–685, Heidelberg, Germany: Springer-Verlag, 2nd ed (2010)

    Google Scholar 

  9. Ghani, M.U., Rafi, M., Tahir, M.A.: Discriminative adaptive sets for multi-label classification. IEEE Access 8, 227579–227595 (2020)

    Google Scholar 

  10. Liu, W., Shen, X., Wang, H., Tsang, I.W.: The Emerging Trends of Multi-Label Learning. CoRR abs/2011.11197 (2020)

    Google Scholar 

  11. Zhou, Z.H.: Exploiting label relationship in multi-label learning. In: UDM@IJCAI 2013, 1 (2013)

    Google Scholar 

  12. Pham, T.-H., Nguyen, T.-C.-V., Vuong, T.-H., Ho, T., Ha, Q.-T., Nguyen, T.-T.: A definition of covering based decision table and its sample applications. In: Kim, H., Kim, K.J., Park, S. (eds.) Information Science and Applications. LNEE, vol. 739, pp. 175–187. Springer, Singapore (2021). https://doi.org/10.1007/978-981-33-6385-4_17

    Chapter  Google Scholar 

  13. Degang, C., Changzhong, W., Qinghua, H.: A new approach to attribute reduction of consistent and inconsistent covering decision systems with covering rough sets. Inf. Sci. 177(17), 3500–3518 (2007)

    Google Scholar 

  14. Yan, C., Zhang, H.: Attribute reduction methods based on Pythagorean fuzzy covering information systems. IEEE Access, 1 (2020)

    Google Scholar 

  15. Zhang, B.-W., Min, F., Ciucci, D.: Representative-based classification through covering-based neighborhood rough sets. Appl. Intell. 43(4), 840–854 (2015). https://doi.org/10.1007/s10489-015-0687-5

    Article  Google Scholar 

  16. Bonikowski, Z., Bryniarski, E., Skardowska, U.W.: Extensions and intentions in the rough set theory. Inf. Sci. 107(1–4), 149–167 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  17. Pawlak, Z., Skowron, A.: Rudiments of rough sets. Inf. Sci. 177(1), 3–27 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Zhan, J., Xu, W.: Two types of coverings based multigranulation rough fuzzy sets and applications to decision making. Artif. Intell. Rev. 53(1), 167–198 (2018). https://doi.org/10.1007/s10462-018-9649-8

    Article  Google Scholar 

  19. Pham, T.-N., Nguyen, V.-Q., Tran, V.-H., Nguyen, T.-T., Ha, Q.-T.: A semi-supervised multi-label classification framework with feature reduction and enrichment. J. Inf. Telecommun. 1(2), 141–154 (2017)

    Google Scholar 

  20. Zhang, M.L., Zhou, Z.H.: A review on multi-label learning algorithms. IEEE Trans. Knowl. Data Eng. 26(8), 1819–1837 (2014)

    Article  Google Scholar 

  21. Zhang, M.-L., Lei, W.: LIFT: multi-label learning with label-specific features. IEEE Trans. Pattern Anal. Mach. Intell. 37(1), 107–120 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thanh-Huyen Pham .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pham, TH., Phan, VT., Pham, TN., Vuong, TH., Nguyen, TT., Ha, QT. (2022). A Multi-label Classification Framework Using the Covering Based Decision Table. In: Szczerbicki, E., Wojtkiewicz, K., Nguyen, S.V., Pietranik, M., Krótkiewicz, M. (eds) Recent Challenges in Intelligent Information and Database Systems. ACIIDS 2022. Communications in Computer and Information Science, vol 1716. Springer, Singapore. https://doi.org/10.1007/978-981-19-8234-7_36

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-8234-7_36

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-8233-0

  • Online ISBN: 978-981-19-8234-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics