Nothing Special   »   [go: up one dir, main page]

Skip to main content

Blockchain-Based UAV-Assisted Forest Supervision and Data Sharing

  • Conference paper
  • First Online:
Blockchain and Trustworthy Systems (BlockSys 2022)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1679))

Included in the following conference series:

Abstract

Forest supervision is an effective means for preventing forest fires, forest diseases and insect pests, and deforestation. This paper proposes a blockchain-based forest supervision system (BSR) in a multi-party environment to achieve forest supervision, where the collected image data are stored on blockchain and IPFS, and a hybrid encryption of CP-ABE and AES algorithm is employed to realize secure forest data sharing and access control among ground base stations. Theoretical analysis and comparison show that the BSR scheme is effective, and the experimental analysis demonstrates its practicability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Vastaranta, M., et al.: Laser-based field measurements in tree-level forest data acquisition. Photogramm. J. Finl. 21, 51–61 (2009)

    Google Scholar 

  2. Gnusov, M.A., Popikov, P.I., Malyukov, S.V., Sherstyukov, N.A., Pozdnyakov, A.K.: Improving the efficiency of forest fire prevention and suppression with of forest fire machine. In: IOP Conference Series: Materials Science and Engineering, vol. 919, pp. 032025. IOP Publishing (2020)

    Google Scholar 

  3. Karp, D.S., et al.: Forest bolsters bird abundance, pest control and coffee yield. Ecol. Lett. 16(11), 1339–1347 (2013)

    Google Scholar 

  4. Morkovina, S.S., Sibiryatkina, I.V., Konovalova, E.M., Bourtsev, D.S.: Investigation of entrepreneurial structures forest management performance of forestry system in sparsely forest-poor region. Asian Soc. Sci. 10(23), 20 (2014)

    Google Scholar 

  5. Eltner, A., Schneider, D., Maas, H.-G.: Integrated processing of high resolution topographic data for soil erosion assessment considering data acquisition schemes and surface properties. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 41 (2016)

    Google Scholar 

  6. Zhou, H., Kong, H., Wei, L., Creighton, D., Nahavandi, S.: On detecting road regions in a single UAV image. IEEE Trans. Intell. Transp. Syst. 18(7), 1713–1722 (2016)

    Article  Google Scholar 

  7. Yli-Huumo, J., Ko, D., Choi, S., Park, S., Smolander, K.: Where is current research on blockchain technology — a systematic review. PLoS ONE 11(10), e0163477 (2016)

    Article  Google Scholar 

  8. Iqbal Mauludi, M., Aminah, N.S., Budiman, M.: Forest fire alert system. In: IOP Conference Series: Earth and Environmental Science, vol. 830, pp. 012032. IOP Publishing (2021)

    Google Scholar 

  9. Suzuki, T., Shiozawa, S., Yamaba, A., Amano, Y.: Forest data collection by UAV Lidar-based 3D mapping: Segmentation of individual tree information from 3D point clouds. Int. J. Autom. Technol. 15(3), 313–323 (2021)

    Article  Google Scholar 

  10. Shi, T.-T., Zhang, X.-B., Guo, L.-P., Huang, L.-Q., Jing, Z.-X.: Application of UAV remote sensing in monitoring of callicarpa nudiflora. China J. Chin. Materia Medica 44(19), 4078–4081 (2019)

    Google Scholar 

  11. Alonso, L., Picos, J., Armesto, J.: Forest cover mapping and pinus species classification using very high-resolution satellite images and random forest. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 3, 203–210 (2021)

    Article  Google Scholar 

  12. Koshelev, A.V., Tkachenko, N.A., Shatrovskaya, M.O.: Decoding of forest belts using satellite images. In: IOP Conference Series: Earth and Environmental Science, vol. 875, p. 012065. IOP Publishing (2021)

    Google Scholar 

  13. Dash, J.P., Watt, M.S., Pearse, G.D., Heaphy, M., Dungey, H.S.: Assessing very high resolution UAV imagery for monitoring forest health during a simulated disease outbreak. ISPRS J. Photogramm. Remote Sens. 131, 1–14 (2017)

    Google Scholar 

  14. Saadat, Md.N., Husen, M.N.: An application framework for forest fire and haze detection with data acquisition using unmanned aerial vehicle. In: Proceedings of the 12th International Conference on Ubiquitous Information Management and Communication, pp. 1–7 (2018)

    Google Scholar 

  15. Datta, S., Sinha, D.: BESDDFFS: blockchain and EdgEdrone based secured data delivery for forest fire surveillance. Peer Peer Netw. Appl. 14(6), 3688–3717 (2021)

    Article  Google Scholar 

  16. Datta, S., Kumar, S., Sinha, D., Das, A.K.: BSSFFS: blockchain-based sybil-secured smart forest fire surveillance. J. Ambient Intell. Humaniz. Comput., 1–32 (2021)

    Google Scholar 

  17. Aloqaily, M., Bouachir, O., Boukerche, A., Al Ridhawi, I.: Design guidelines for blockchain-assisted 5G-UAV networks. IEEE Netw. 35(1), 64–71 (2021)

    Google Scholar 

  18. Alladi, T., Bansal, G., Chamola, V., Guizani, M., et al.: SecAuthUAV: a novel authentication scheme for UAV-ground station and UAV-UAV communication. IEEE Trans. Veh. Technol. 69(12), 15068–15077 (2020)

    Article  Google Scholar 

  19. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryption. In: 2007 IEEE Symposium on Security and Privacy (SP 2007), pp. 321–334. IEEE (2007)

    Google Scholar 

  20. Fischlin, M.: The Cramer-Shoup strong-RSA signature scheme revisited. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 116–129. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36288-6_9

    Chapter  Google Scholar 

Download references

Acknowledgments

This article is supported in part by the National Key R &D Program of China under project 2020YFB1006004, the Guangxi Natural Science Foundation under grants AD19245048 and 2019GXNSFGA245004, the National Natural Science Foundation of China under projects 621621017 and 62172119, the Guangdong Key R &D Program under project 2020B0101090002, the Major Key Project of PCL under grants PCL2021A09, PCL2021A02, and PCL2022A03, and the Shenzhen Science and Technology R &D Fund under project JSGG20201102170000002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaochun Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, L. et al. (2022). Blockchain-Based UAV-Assisted Forest Supervision and Data Sharing. In: Svetinovic, D., Zhang, Y., Luo, X., Huang, X., Chen, X. (eds) Blockchain and Trustworthy Systems. BlockSys 2022. Communications in Computer and Information Science, vol 1679. Springer, Singapore. https://doi.org/10.1007/978-981-19-8043-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-8043-5_18

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-8042-8

  • Online ISBN: 978-981-19-8043-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics