Nothing Special   »   [go: up one dir, main page]

Skip to main content

TU-Net: U-shaped Structure Based on Transformers for Medical Image Segmentation

  • Conference paper
  • First Online:
Data Science (ICPCSEE 2022)

Abstract

Recently, the development of deep learning technology in medical image segmentation has become increasingly mature, and the symmetric U-Net has made breakthrough progress. However, because of the inherent limitations of convolution operations, U-Net has some shortcomings in the interaction of global context information. For this reason, this paper proposes TU-Net based on transformers. TU-Net can strengthen the modeling of global context information, enhance the extraction of detailed information and reduce the computational complexity of the algorithm. In patch embedding, successive convolutional layers with small convolutional kernels are proposed to extract features. Cross Attention-Skip is proposed to complete the fusion of shallow and deep features during the skip connection process. TU-Net is performed on the Synapse dataset to segment eight abdominal organs. The experimental results show that TU-Net is superior to ViT, V-Net, U-Net and Swin-Unet.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  2. He, K., Zhang, X., Ren, S.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  3. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017)

    Google Scholar 

  4. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., et al.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)

    Google Scholar 

  5. Vaswani, A., Shazeer, N., Parmar, N., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, pp. 5998–6008 (2017)

    Google Scholar 

  6. Yu, Q., Xie, L., Wang, Y., Zhou, Y., Fishman, E.K., Yuille, A.L.: Recurrent saliency transformation network: incorporating multi-stage visual cues for small organ segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8280–8289 (2018)

    Google Scholar 

  7. Zhou, Y., Xie, L., Shen, W., Wang, Y., Fishman, E.K., Yuille, A.L.: A fixed-point model for pancreas segmentation in abdominal CT scans. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10433, pp. 693–701. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66182-7_79

    Chapter  Google Scholar 

  8. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49

    Chapter  Google Scholar 

  9. Milletari, F., Navab, N., Ahmadi, S.: V-net: fully convolutional neural networks for volumetric medical image segmentation. In: 2016 Fourth International Conference on 3D Vision (3DV), pp. 565–571. IEEE (2016)

    Google Scholar 

  10. Chen, J., Lu, Y., Yu, Q., Luo, X., Adeli, E., et al.: TransUNet: transformers make strong encoders for medical image segmentation, arXiv preprint arXiv:2102.04306 (2021)

  11. Schlemper, J., et al.: Attention gated networks: learning to leverage salient regions in medical images. Med. Image Anal. 53, 197–207 (2019)

    Article  Google Scholar 

  12. Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2881–2890 (2017)

    Google Scholar 

  13. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.: Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2017)

    Article  Google Scholar 

  14. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 213–229. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_13

    Chapter  Google Scholar 

  15. Devlin, J., Chang, M.W., Lee, K., et al.: Bert: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)

  16. Zheng, S., Lu, J., Zhao, H., Zhu, X., Luo, Z., et al.: Rethinking semantic segmentation from a sequence-to-sequence perspective with transformers. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6881–6890 (2021)

    Google Scholar 

  17. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., et al.: An image is worth 16x16 words: transformers for image recognition at scale. In: ICLR (2021)

    Google Scholar 

  18. Zhang, Y., Liu, H., Hu, Q.: TransFuse: fusing transformers and CNNs for medical image segmentation. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12901, pp. 14–24. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87193-2_2

    Chapter  Google Scholar 

  19. Valanarasu, J.M.J., Oza, P., Hacihaliloglu, I., Patel, V.M.: Medical transformer: gated axial-attention for medical image segmentation. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12901, pp. 36–46. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87193-2_4

    Chapter  Google Scholar 

  20. Chen, B., Liu, Y., Zhang, Z.: TransAttUnet: multi-level attention-guided u-net with transformer for medical image segmentation. arXiv preprint arXiv:2107.05274 (2021)

  21. Cao, H., Wang, Y., Chen, J., Jiang, D., et al.: Swin-Unet: unet-like pure transformer for medical image segmentation, arXiv preprint arXiv:2105.05537 (2021)

  22. Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 10012–10022 (2021)

    Google Scholar 

  23. Hendrycks, D., Gimpel, K.: Gaussian error linear units (gelus). arXiv:1606.08415 (2016)

  24. Ba, J.L., Kiros, J.R., Hinton, G.: Layer normalization. arXiv preprint arXiv:1607.06450 (2016)

  25. Fu, S., et al.: Domain adaptive relational reasoning for 3D multi-organ segmentation. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12261, pp. 656–666. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59710-8_64

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhifang Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhao, J., Wu, D., Wang, Z. (2022). TU-Net: U-shaped Structure Based on Transformers for Medical Image Segmentation. In: Wang, Y., Zhu, G., Han, Q., Wang, H., Song, X., Lu, Z. (eds) Data Science. ICPCSEE 2022. Communications in Computer and Information Science, vol 1628. Springer, Singapore. https://doi.org/10.1007/978-981-19-5194-7_28

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-5194-7_28

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-5193-0

  • Online ISBN: 978-981-19-5194-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics