Nothing Special   »   [go: up one dir, main page]

Skip to main content

Fermatean Fuzzy Combined Compromise Solution Multiple Expert Multiple Criteria Decision-Making Approach

  • Chapter
  • First Online:
Real Life Applications of Multiple Criteria Decision Making Techniques in Fuzzy Domain

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 420))

Abstract

The Fermatean fuzzy set (FFS) presented is a stronger and usefulness uncertain information representation model for portraying the potential nondeterminacy of data, and the combined compromise solution (COCOSO) method can comprehensively attain a more robust decision outcome through taking into consideration three information fusion strategies. By taking the merits of FFS and COCOSO method, we advance a newly multiple expert multiple criteria decision-making (MEMCDM) technique in light of COCOSO and coefficient of variation methods with Fermatean fuzzy information. Firstly, we review several fundamental conceptions of FFS, including the score function and aggregation operators. Secondly, we put forward an innovative MEMCDM approach through synthesizing the COCOSO method and coefficient of variation method under Fermatean fuzzy environment, where the criterion weight is ascertained through improved Fermatean fuzzy coefficient of variation (COV) method from the visual angle of decision information objectivity. Afterward, a case concerning the assessment of investment enterprises is employed to further confirm the practicability and feasibility of the propounded MEMCDM method, as well as the contrast analysis is conducted to sticking out the flexibility and efficiency of the proffered MEMCDM technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Tzeng, G.H., Huang, J.J.: Multiple Attribute Decision Making: Methods and Applications, p. 1981. Springer-Verlag, New York (2011)

    Book  MATH  Google Scholar 

  2. Liu, Y., Qin, Y., Liu, F., Rong, Y.: GIBWM-MABAC approach for MAGDM under multi-granularity intuitionistic 2-tuple linguistic information model. J. Ambient Intell. Humaniz. Comput., 1–17 (2021). https://doi.org/10.1007/s12652-021-03476-3

  3. Liu, Y., Wei, G., Liu, H., Xu, L.: Group decision making for internet public opinion emergency based upon linguistic intuitionistic fuzzy information. Int. J. Mach. Learn. Cybern. 1–16. https://doi.org/10.1007/s13042-020-01262-9

  4. Rong, Y., Liu, Y., Pei, Z.: Complex q-rung orthopair fuzzy 2-tuple linguistic Maclaurin symmetric mean operators and its application to emergency program selection. Int. J. Intell. Syst. 35(11), 1749–1790 (2020)

    Article  Google Scholar 

  5. Rong Y, Liu Y, Pei Z.: A novel multiple attribute decision-making approach for evaluation of emergency management schemes under picture fuzzy environment.Int. J. Mach. Learn. Cybern. (2021). https://doi.org/10.1007/s13042-021-01280-1

  6. Mardani, A., Saraji, M.K., Mishra, A.R., Rani, P.: A novel extended approach under hesitant fuzzy sets to design a framework for assessing the key challenges of digital health interventions adoption during the COVID-19 outbreak. Appl. Soft Comput. 96, 106613 (2020)

    Article  Google Scholar 

  7. Saraji, M.K., Mardani, A., Köppen, M., Mishra, A.R., Rani, P.:An extended hesitant fuzzy set using SWARA-MULTIMOORA approach to adapt online education for the control of the pandemic spread of COVID-19 in higher education institutions. Artif. Intell. Rev. 1–26 (2021).https://doi.org/10.1007/s10462-021-10029-9

  8. Zadeh, L.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)

    Article  MATH  Google Scholar 

  9. Atanssov, K.T.: Intuitionistic fuzzy sets. Fuzzy Sets Syst. 20(1), 87–96 (1986)

    Article  Google Scholar 

  10. Ejegwa, P.A.: Novel correlation coefficient for intuitionistic fuzzy sets and its application to multi-criteria decision-making problems. Int. J. Fuzzy Syst. Appl. 10(2), 39–58 (2021)

    Google Scholar 

  11. Yager, R.R.: Pythagorean membership grades in multicriteria decision making. IEEE Trans. Fuzzy Syst. 22(4), 958–965 (2013)

    Article  Google Scholar 

  12. Yager, R.R.: Pythagorean fuzzy subsets. In: 2013 Joint IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS), pp. 57–61. IEEE, June 2013

    Google Scholar 

  13. Ejegwa, P.A., Jana C., Some new weighted correlation coefficients between Pythagorean fuzzy sets and their applications, In: Garg, H. (eds.) Pythagorean Fuzzy Sets, pp. 39–64, Springer (2021). https://doi.org/10.1007/978-981-16-1989-2-2

  14. Ejegwa, P.A., Feng, Y., Zhang, W.: Pattern recognition based on an improved Szmidt and Kacprzyk’s correlation coefficient in Pythagorean fuzzy environment, In: Min, H., Sitian, Q., Nian, Z. (eds.) Advances in Neural Networks—17th International Symposium on Neural Networks (ISNN 2020), Lecture Notes in Computer Science (LNCS) 12557, pp. 190–206. Springer (2020). https://doi.org/10.1007/978-3-030-64221-1-17

  15. Senapati, T., Yager, R.R.: Fermatean fuzzy sets. J. Ambient Intell. Humaniz. Comput. 11(2), 663–674 (2020)

    Article  Google Scholar 

  16. Senapati, T., Yager, R.R.: Fermatean fuzzy weighted averaging/geometric operators and its application in multi-criteria decision-making methods. Eng. Appl. Artif. Intell. 85, 112–121 (2019)

    Article  Google Scholar 

  17. Senapati, T., Yager, R.R.: Some new operations over Fermatean fuzzy numbers and application of Fermatean fuzzy WPM in multiple criteria decision making. Informatica 30(2), 391–412 (2019)

    Article  MATH  Google Scholar 

  18. Garg, H., Shahzadi, G., Akram, M.: Decision-making analysis based on Fermatean fuzzy Yager aggregation operators with application in COVID-19 testing facility. Math. Prob. Eng. 2020 (2020). https://doi.org/10.1155/2020/7279027

  19. Shahzadi, G., Muhiuddin, G., Arif Butt, M., Ashraf, A.: Hamacher interactive hybrid weighted averaging operators under Fermatean fuzzy numbers. J. Math. 2021 (2021). https://doi.org/10.1155/2021/5556017

  20. Shahzadi, G., Zafar, F., Alghamdi, M.A.: Multiple-attribute decision-making using Fermatean fuzzy Hamacher interactive geometric operators. Math. Prob. Eng. 2021 (2021). https://doi.org/10.1155/2021/5150933

  21. Shit, C., Ghorai, G.: Multiple attribute decision-making based on different types of Dombi aggregation operators under Fermatean fuzzy information. Soft. Comput. 25(22), 13869–13880 (2021)

    Article  MATH  Google Scholar 

  22. Ejegwa, P.A., Nwankwo, K.N., Ahmad, M., Ghazal, T.M., Khan, M.A.: Composite relation under Fermatean fuzzy context and its application in disease diagnosis. Informatica 32(10), 87–101 (2021)

    Google Scholar 

  23. Liu, D., Liu, Y., Chen, X.: Fermatean fuzzy linguistic set and its application in multicriteria decision making. Int. J. Intell. Syst. 34(5), 878–894 (2019)

    Article  Google Scholar 

  24. Liu, D., Liu, Y., Wang, L.: Distance measure for Fermatean fuzzy linguistic term sets based on linguistic scale function: An illustration of the TODIM and TOPSIS methods. Int. J. Intell. Syst. 34(11), 2807–2834 (2019)

    Article  Google Scholar 

  25. Jeevaraj, S.: Ordering of interval-valued Fermatean fuzzy sets and its applications. Expert Syst. Appl. 185 (2021). https://doi.org/10.1016/j.eswa.2021.115613

  26. Keshavarz-Ghorabaee, M., Amiri, M., Hashemi-Tabatabaei, M., Zavadskas, E.K., Kaklauskas, A.: A new decision-making approach based on Fermatean fuzzy sets and WASPAS for green construction supplier evaluation. Mathematics 8, 2202 (2020). https://doi.org/10.3390/math8122202

    Article  Google Scholar 

  27. Mishra, A.R., Rani, P.: Multi-criteria healthcare waste disposal location selection based on Fermatean fuzzy WASPAS method. Complex Intell. Syst. 7(5), 2469–2484 (2021)

    Article  Google Scholar 

  28. Gul, M., Lo, H.-W., Yucesan, M.: Fermatean fuzzy TOPSIS-based approach for occupational risk assessment in manufacturing. Complex Intell. Syst. 7(5), 2635–2653 (2021)

    Article  Google Scholar 

  29. Aydemir, S.B., Gunduz, S.Y.: Fermatean fuzzy TOPSIS method with Dombi aggregation operators and its application in multi-criteria decision making. J. Intell. Fuzzy Syst. 39(1), 851–869 (2020)

    Article  Google Scholar 

  30. Gul, S.: Fermatean fuzzy set extensions of SAW, ARAS, and VIKOR with applications in COVID-19 testing laboratory selection problem. Expert Syst. 38(8), e12769 (2021). https://doi.org/10.1111/exsy.12769

  31. Mishra, A.R., Rani, P., Pandey, K.: Fermatean fuzzy CRITIC-EDAS approach for the selection of sustainable third-party reverse logistics providers using improved generalized score function. J. Ambient Intell. Humaniz. Comput. (2021). https://doi.org/10.1007/s12652-021-02902-w

  32. Rani, P., Mishra, A.R.: Fermatean fuzzy Einstein aggregation operators-based MULTIMOORA method for electric vehicle charging station selection. Expert Syst. Appl. 182, 115267 (2021). https://doi.org/10.1016/j.eswa.2021.115267

    Article  Google Scholar 

  33. Kamali Saraji, M., Streimikiene, D., Kyriakopoulos, G.L.: Fermatean fuzzy CRITIC-COPRAS method for evaluating the challenges to industry 4.0 adoption for a sustainable digital transformation. Sustainability 13(17), 9577 (2021)

    Google Scholar 

  34. Deng, Z., Wang, J.: Evidential Fermatean fuzzy multicriteria decision-making based on Fermatean fuzzy entropy. Int. J. Intell. Syst. 36(10), 5866–5886 (2021)

    Article  Google Scholar 

  35. Yazdani, M., Zarate, P., Zavadskas, E.K., Turskis, Z.: A combined compromise solution (CoCoSo) method for multi-criteria decision-making problems. Manag. Decis. 57(9), 2501–2519 (2019)

    Article  Google Scholar 

  36. Yazdani, M., Wen, Z., Liao, H., Banaitis, A., Turskis, Z.: A grey combined compromise solution (COCOSO-G) method for supplier selection in construction management. J. Civ. Eng. Manag. 25(8), 858–874 (2019)

    Article  Google Scholar 

  37. Peng, X., Zhang, X., Luo, Z.: Pythagorean fuzzy MCDM method based on CoCoSo and CRITIC with score function for 5G industry evaluation. Artif. Intell. Rev. 53(5), 3813–3847 (2020)

    Article  Google Scholar 

  38. Ecer, F., Pamucar, D.: Sustainable supplier selection: A novel integrated fuzzy best worst method (F-BWM) and fuzzy CoCoSo with Bonferroni (CoCoSo’B) multi-criteria model. J. Cleaner Prod. 266, 121981 (2020). https://doi.org/10.1016/j.jclepro.2020.121981

  39. Rani, P., Ali, J., Krishankumar, R., Mishra, A.R., Cavallaro, F., Ravichandran, K.S.: An integrated single-valued neutrosophic combined compromise solution methodology for renewable energy resource selection problem. Energies 14(15), 4594 (2021). https://doi.org/10.3390/en14154594

    Article  Google Scholar 

  40. Yazdani, M., Chatterjee, P., Pamucar, D., Chakraborty, S.: Development of an integrated decision making model for location selection of logistics centers in the Spanish autonomous communities. Expert Syst. Appl. 148, 113208 (2020). https://doi.org/10.1016/j.eswa.2020.113208

    Article  Google Scholar 

  41. Rani, P., Mishra, A.R., Saha, A., Hezam, I.M., Pamucar, D.: Fermatean fuzzy Heronian mean operators and MEREC-based additive ratio assessment method: An application to food waste treatment technology selection. Int. J. Intell. Syst. 1–36 (2021). https://doi.org/10.1002/int.22787

  42. Mishra, A.R., Rani, P., Pandey, K., et al.: Novel multi-criteria intuitionistic fuzzy SWARA-COPRAS approach for sustainability evaluation of the bioenergy production process. Sustainability 12(10), 4155 (2020)

    Article  Google Scholar 

  43. Roubens, M.: Fuzzy sets and decision analysis. Fuzzy Sets Syst. 90, 199–206 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  44. Liu, B.S., Zhou, Q., Ding, R.X., Palomares, I., Herrera, F.: Large-scale group decision making model based on social network analysis: Trust relationship-based conflict detection and elimination. Eur. J. Oper. Res. 275(2), 737–754 (2019). https://doi.org/10.1016/j.ejor.2018.11.075

  45. Zhang, Y., Chen, X., Gao, L., Dong, Y., Pedryczc, W.: Consensus reaching with trust evolution in social network group decision making. Expert Syst. Appl. (2021). https://doi.org/10.1016/j.eswa.2021.116022

  46. Wang, X., Triantaphyllou, E.: Ranking irregularities when evaluating alternatives by using some ELECTRE methods. Omega 36(1), 45–63 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

The research was funded by the General Program of National Natural Science Foundation of China (No: 12071280).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liying Yu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rong, Y., Yu, L., Liu, Y. (2023). Fermatean Fuzzy Combined Compromise Solution Multiple Expert Multiple Criteria Decision-Making Approach. In: Sahoo, L., Senapati, T., Yager, R.R. (eds) Real Life Applications of Multiple Criteria Decision Making Techniques in Fuzzy Domain. Studies in Fuzziness and Soft Computing, vol 420. Springer, Singapore. https://doi.org/10.1007/978-981-19-4929-6_4

Download citation

Publish with us

Policies and ethics