Nothing Special   »   [go: up one dir, main page]

Skip to main content

Nonsubmodular Maximization with Knapsack Constraint via Multilinear Extension

  • Conference paper
  • First Online:
Parallel Architectures, Algorithms and Programming (PAAP 2020)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1362))

  • 836 Accesses

Abstract

For the problem of maximizing a monotone submodular function subject to knapsack constraint, there is a \((1-1/e-\epsilon )\)-approximation algorithm running a nearly-linear time. In this paper, we consider the case that the objective function is nonsubmodular. We propose an approximation algorithm with approximation ratio

$$ \kappa \left( 1+\frac{\epsilon }{\kappa ^{2}(1-\epsilon )} \right) ^{-1} \left( 1- e^{-\varOmega \left( \epsilon ^{2} / \lambda \right) }\right) \left( 1-e^{-\kappa ^{3}}-O(\epsilon ) \right) , $$

and complexity \(\tilde{O} (\frac{1}{1-\tau } n^2 (\log n)^{\frac{1}{\epsilon }+2}),\) where \(\kappa \) is the continuous submodularity ratio, \(\tau \) is the curvature and \(\lambda \) is the largest weight. The technology of our algorithm is using continuous greedy to get a fractional solution and then rounding it with the contention resolution scheme.

Supported by National Natural Science Foundation of China (No. 12001335) and Shandong Provincial Natural Science Foundation, China (Nos. ZR2020MA029, ZR2019PA004).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Badanidiyuru, A., Vondr\(\rm {\acute{a}}\)k, J.: Fast algorithms for maximizing submodular functions. In: Proceedings of SODA, pp. 1497–1514 (2013). https://doi.org/10.1137/1.9781611973402.110

  2. Bian, A.A., Buhmann, J.M., Krause, A., Tschiatschek, S.: Guarantees for greedy maximization of non-submodular functions with applications. In: Proceedings of ICML, pp. 498–507 (2017). https://doi.org/10.5555/3305381.3305433

  3. Calinescu, G., Chekuri, C., Pál, M., Vondrák, J.: Maximizing a submodular set function subject to a matroid constraint (extended abstract). In: Fischetti, M., Williamson, D.P. (eds.) IPCO 2007. LNCS, vol. 4513, pp. 182–196. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72792-7_15

    Chapter  Google Scholar 

  4. Chekuri, C., Vondr\(\rm {\acute{a}}\)k, J., Zenkluse, R.: Submodular function maximization via the multilinear relaxation and contention resolution schemes. SIAM J. Comput. 43(6), 1831–1879 (2014)

    Google Scholar 

  5. Ene, A., Nguy\(\rm {\tilde{\hat{e}}}\)n, H.L.: A nearly-linear time algorithm for submodular maximization with a knapsack constraint. In: Proceedings of ICALP, pp. 53:1–53:12 (2019). https://doi.org/10.4230/LIPIcs.ICALP.2019.53

  6. Feldman, M.: Maximization problems with submodular objective functions. Ph.D. thesis, Computer Science Department, Technion (2013)

    Google Scholar 

  7. Fortuin, C.M., Kasteleyn, P.W.: Correlation inequalities on some partially ordered sets. Commun. Math. Phys. 22(2), 89–103 (1971)

    Article  MathSciNet  Google Scholar 

  8. Gong, S., Nong, Q., Liu, W., Fang, Q.: Parametric monotone function maximization with matroid constraints. J. Global Optim. 75(3), 833–849 (2019)

    Article  MathSciNet  Google Scholar 

  9. Kleywegt, A.J., Papastavrou, J.D.: The dynamic and stochastic knapsack problem. Oper. Res. 46(1), 17–35 (1998)

    Article  MathSciNet  Google Scholar 

  10. Mansini, R., Speranza, M.G.: A multidimensional knapsack model for asset-backed securitization. J. Oper. Res. Soc. 53(8), 822–832 (2002)

    Article  Google Scholar 

  11. Shamir, A.: A polynomial time algorithm for breaking the basic Merkle-Hellman cryptosystem. In: Proceedings of SFCS, pp. 145–152 (1982). https://doi.org/10.1109/SFCS.1982.5

  12. Sviridenko, M.: A note on maximizing a submodular set function subject to a knapsack constraint. Oper. Res. Lett. 32(1), 41–43 (2004)

    Article  MathSciNet  Google Scholar 

  13. Sviridenko, M., Vondr\(\rm {\acute{a}}\)k, J., Ward, J.: Optimal approximation for submodular and supermodular optimization with bounded curvature. Math. Oper. Res. 42(4), 1197–1218 (2017)

    Google Scholar 

  14. Yoshida, Y.: Maximizing a monotone submodular function with a bounded curvature under a knapsack constraint. SIAM Discrete Math. 33(3), 1452–1471 (2019)

    Article  MathSciNet  Google Scholar 

  15. Zhang, Z., Liu, B., Wang, Y., Xu, D., Zhang, D.: Greedy algorithm for maximization of non-submodular functions subject to knapsack constraint. In: Du, D.-Z., Duan, Z., Tian, C. (eds.) COCOON 2019. LNCS, vol. 11653, pp. 651–662. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26176-4_54

    Chapter  Google Scholar 

  16. Zhang, Z., Liu, B., Wang, Y., Xu, D., Zhang, D.: Greedy algorithm for maximization of non-submodular functions subject to knapsack constraint. In: Du, D.-Z., Duan, Z., Tian, C. (eds.) COCOON 2019. LNCS, vol. 11653, pp. 651–662. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26176-4_54

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qian Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ju, J., Li, M., Liu, J., Liu, Q., Zhou, Y. (2021). Nonsubmodular Maximization with Knapsack Constraint via Multilinear Extension. In: Ning, L., Chau, V., Lau, F. (eds) Parallel Architectures, Algorithms and Programming. PAAP 2020. Communications in Computer and Information Science, vol 1362. Springer, Singapore. https://doi.org/10.1007/978-981-16-0010-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-0010-4_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-0009-8

  • Online ISBN: 978-981-16-0010-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics