Abstract
For the problem of maximizing a monotone submodular function subject to knapsack constraint, there is a \((1-1/e-\epsilon )\)-approximation algorithm running a nearly-linear time. In this paper, we consider the case that the objective function is nonsubmodular. We propose an approximation algorithm with approximation ratio
and complexity \(\tilde{O} (\frac{1}{1-\tau } n^2 (\log n)^{\frac{1}{\epsilon }+2}),\) where \(\kappa \) is the continuous submodularity ratio, \(\tau \) is the curvature and \(\lambda \) is the largest weight. The technology of our algorithm is using continuous greedy to get a fractional solution and then rounding it with the contention resolution scheme.
Supported by National Natural Science Foundation of China (No. 12001335) and Shandong Provincial Natural Science Foundation, China (Nos. ZR2020MA029, ZR2019PA004).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Badanidiyuru, A., Vondr\(\rm {\acute{a}}\)k, J.: Fast algorithms for maximizing submodular functions. In: Proceedings of SODA, pp. 1497–1514 (2013). https://doi.org/10.1137/1.9781611973402.110
Bian, A.A., Buhmann, J.M., Krause, A., Tschiatschek, S.: Guarantees for greedy maximization of non-submodular functions with applications. In: Proceedings of ICML, pp. 498–507 (2017). https://doi.org/10.5555/3305381.3305433
Calinescu, G., Chekuri, C., Pál, M., Vondrák, J.: Maximizing a submodular set function subject to a matroid constraint (extended abstract). In: Fischetti, M., Williamson, D.P. (eds.) IPCO 2007. LNCS, vol. 4513, pp. 182–196. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72792-7_15
Chekuri, C., Vondr\(\rm {\acute{a}}\)k, J., Zenkluse, R.: Submodular function maximization via the multilinear relaxation and contention resolution schemes. SIAM J. Comput. 43(6), 1831–1879 (2014)
Ene, A., Nguy\(\rm {\tilde{\hat{e}}}\)n, H.L.: A nearly-linear time algorithm for submodular maximization with a knapsack constraint. In: Proceedings of ICALP, pp. 53:1–53:12 (2019). https://doi.org/10.4230/LIPIcs.ICALP.2019.53
Feldman, M.: Maximization problems with submodular objective functions. Ph.D. thesis, Computer Science Department, Technion (2013)
Fortuin, C.M., Kasteleyn, P.W.: Correlation inequalities on some partially ordered sets. Commun. Math. Phys. 22(2), 89–103 (1971)
Gong, S., Nong, Q., Liu, W., Fang, Q.: Parametric monotone function maximization with matroid constraints. J. Global Optim. 75(3), 833–849 (2019)
Kleywegt, A.J., Papastavrou, J.D.: The dynamic and stochastic knapsack problem. Oper. Res. 46(1), 17–35 (1998)
Mansini, R., Speranza, M.G.: A multidimensional knapsack model for asset-backed securitization. J. Oper. Res. Soc. 53(8), 822–832 (2002)
Shamir, A.: A polynomial time algorithm for breaking the basic Merkle-Hellman cryptosystem. In: Proceedings of SFCS, pp. 145–152 (1982). https://doi.org/10.1109/SFCS.1982.5
Sviridenko, M.: A note on maximizing a submodular set function subject to a knapsack constraint. Oper. Res. Lett. 32(1), 41–43 (2004)
Sviridenko, M., Vondr\(\rm {\acute{a}}\)k, J., Ward, J.: Optimal approximation for submodular and supermodular optimization with bounded curvature. Math. Oper. Res. 42(4), 1197–1218 (2017)
Yoshida, Y.: Maximizing a monotone submodular function with a bounded curvature under a knapsack constraint. SIAM Discrete Math. 33(3), 1452–1471 (2019)
Zhang, Z., Liu, B., Wang, Y., Xu, D., Zhang, D.: Greedy algorithm for maximization of non-submodular functions subject to knapsack constraint. In: Du, D.-Z., Duan, Z., Tian, C. (eds.) COCOON 2019. LNCS, vol. 11653, pp. 651–662. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26176-4_54
Zhang, Z., Liu, B., Wang, Y., Xu, D., Zhang, D.: Greedy algorithm for maximization of non-submodular functions subject to knapsack constraint. In: Du, D.-Z., Duan, Z., Tian, C. (eds.) COCOON 2019. LNCS, vol. 11653, pp. 651–662. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26176-4_54
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Ju, J., Li, M., Liu, J., Liu, Q., Zhou, Y. (2021). Nonsubmodular Maximization with Knapsack Constraint via Multilinear Extension. In: Ning, L., Chau, V., Lau, F. (eds) Parallel Architectures, Algorithms and Programming. PAAP 2020. Communications in Computer and Information Science, vol 1362. Springer, Singapore. https://doi.org/10.1007/978-981-16-0010-4_8
Download citation
DOI: https://doi.org/10.1007/978-981-16-0010-4_8
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-16-0009-8
Online ISBN: 978-981-16-0010-4
eBook Packages: Computer ScienceComputer Science (R0)