Nothing Special   »   [go: up one dir, main page]

Skip to main content

Meta-Analysis to Prognosis Myocardial Infarction Using 12 Lead ECG

  • Conference paper
  • First Online:
High Performance Computing and Networking

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 853))

  • 801 Accesses

Abstract

Cardiovascular disease is caused by heart or blood vessels. It creates immediate heart arrest or a blockage and leads to death. Nearly 70% of people are suffering from these diseases. One of the major diseases that affect the heart is myocardial infarction (MI). MI occurs when there is some damage to the heart muscle. There are various test measures for diagnosing myocardial infarction. A common way to diagnose heart diseases in the medical field is electrocardiogram (ECG). In diagnosing MI through ECG, the changes that occur in the ECG wave are ST-Elevation MI (STEMI), non-ST-elevation MI (NSTEMI), and left bundle branch block (LBBB). In this study, we discuss different classification methods for the diagnosis of MI. Before the classification of the diseases, preprocessing is a preliminary task to achieve accurate information. In comparison with KNN, SVM, and YOLOv3 algorithm, LSTM could give better classification results for the diagnosis of MI. In the future, our research can be carried out on automatic diagnosis of the diseases, by using current trends of deep learning models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Graham DJ, Ouellet-Hellstrom R, MaCurdy TE, Ali F, Sholley C, Worrall C, Kelman JA (2010) Risk of acute myocardial infarction, stroke, heart failure, and death in elderly Medicare patients treated with rosiglitazone or pioglitazone. JAMA 304(4):411–418

    Google Scholar 

  2. Mechanic OJ, Grossman SA (2019) Acute myocardial infarction. In StatPearls [Internet]. StatPearls Publishing

    Google Scholar 

  3. Gulati R, Behfar A, Narula J, Kanwar A, Lerman A, Cooper L, Singh M (Jan 2020) Acute myocardial infarction in young individuals. Mayo Clinic Proc 95(1):136–156. Elsevier

    Google Scholar 

  4. Sedehi D, Cigarroa JE (2017) Precipitants of myocardial ischemia. Chronic coronary artery disease: a companion to Braunwald’s heart disease, 69

    Google Scholar 

  5. https://www.shutterstock.com/image-vector/myocardial-infarction-3d-realostic-illustration-human-1079882426

  6. Hedén B, Ohlin H, Rittner R, Edenbrandt L (1997) Acute myocardial infarction detected in the 12-lead ECG by artificial neural networks. Circulation 96(6):1798–1802

    Article  Google Scholar 

  7. SCOT-Heart Investigators (2018) Coronary CT angiography and 5-year risk of myocardial infarction. New Engl J Med 379(10):924–933

    Google Scholar 

  8. Katus HA, Remppis A, Neumann FJ, Scheffold T, Diederich KW, Vinar G, Noe A, Matern G, Kuebler W (1991) Diagnostic efficiency of troponin T measurements in acute myocardial infarction. Circulation 83(3):902–912

    Article  Google Scholar 

  9. Park KC, Gaze DC, Collinson PO, Marber MS (2017) Cardiac troponins: from myocardial infarction to chronic disease. Cardiovasc Res 113(14):1708–1718

    Article  Google Scholar 

  10. Chen W (2018) Electrocardiogram. In: Seamless healthcare monitoring. Springer, Cham, pp 3–44

    Google Scholar 

  11. Kligfield P, Gettes LS, Bailey JJ, Childers R, Deal BJ, Hancock EW, Pahlm O, et al (2007) Recommendations for the standardization and interpretation of the electrocardiogram: part I: the electrocardiogram and its technology a scientific statement from the international society for computerized electrocardiology. J Am Coll Cardiol 49(10):1109–1127

    Google Scholar 

  12. Mason JW, Hancock EW, Gettes LS (2007) Recommendations for the standardization and interpretation of the electrocardiogram: part II the American college of cardiology foundation; and the heart rhythm society endorsed by the international society for computerized electrocardiology. J Am Coll Cardiol 49(10):1128–1135

    Article  Google Scholar 

  13. Thygesen K, Alpert JS, White HD, Task force members: Chairpersons: Kristian Thygesen (Denmark); Alpert JS (USA)*, White HD (New Zealand)*, Biomarker group: Jaffe AS, Coordinator (USA), Apple FS (USA), Galvani M (Italy), Katus HA (Germany), Newby LK (USA), Ravkilde J (Denmark), ECG Group: Bernard Chaitman, Co-ordinator (USA), Clemmensen PM (Denmark), Dellborg M (Sweden), Hod H (Israel), Porela P (Finland), ... Implementation Group: Wallentin LC Coordinator (Sweden), Francisco Fernández-Avilés (Spain), Fox KM (UK), Parkhomenko AN (Ukraine), Priori SG (Italy), Tendera M (Poland), Voipio-Pulkki L-M (Finland) (2007) Universal definition of myocardial infarction. circulation 116(22):2634–2653

    Google Scholar 

  14. Jowett NI, Turner AM, Cole A, Jones PA (2005) Modified electrode placement must be recorded when performing 12-lead electrocardiograms. Postgrad Med J 81(952):122–125

    Article  Google Scholar 

  15. Mukherjee J, Das PK, Ghosh PR, Banerjee D, Sharma T, Basak D, Sanyal S (2015) Electrocardiogram pattern of some exotic breeds of trained dogs: a variation study. Vet World 8(11):1317

    Article  Google Scholar 

  16. Npatchett, Contributes text and origin-nal graphics to English Wikipedia articles on medicine, biology, and chemistry (https://en.wikipedia.org/wiki/Electrocardiography)

  17. Reilly RB, Lee TC (2010) Electrograms (ecg, eeg, emg, eog). Technol Health Care 18(6):443–458

    Article  Google Scholar 

  18. Fotiadis D, Likas A, Michalis L, Papaloukas C (2006) Electrocardiogram (ECG): automated diagnosis. Wiley encyclopedia of biomedical engineering

    Google Scholar 

  19. White HD, Chew DP (2008) Acute myocardial infarction. The Lancet 372(9638):570–584

    Article  Google Scholar 

  20. Barbagelata A, Bethea CF, Severance HW, Mentz RJ, Albert D, Barsness GW, ... Chisum B (2018) Smartphone ECG for evaluation of ST-segment elevation myocardial infarction (STEMI): design of the ST LEUIS international multicenter study. J Electrocardiol 51(2):260–264

    Google Scholar 

  21. Gholikhani-Darbroud R, Hajahmadipoorrafsanjani M, Mansouri F, Khaki-Khatibi F, Ghojazadeh M (2017) Decreased circulatory microRNA-4478 as a specifi c biomarker for diagnosing non-ST-segment elevation myocardial infarction (NSTEMI) and its association with soluble leptin receptor. Bratisl Med J 118(11):684–690

    Google Scholar 

  22. Jothieswaran A, Body R (2016) BET 2: diagnosing acute myocardial infarction in the presence of ventricular pacing: can Sgarbossa criteria help? Emerg Med J 33(9):672–673

    Article  Google Scholar 

  23. Dodd KW, Elm KD, Smith SW (2016) Comparison of the QRS complex, ST-segment, and T-wave among patients with left bundle branch block with and without acute myocardial infarction. J Emerg Med 51(1):1–8

    Article  Google Scholar 

  24. Left bundle branch block (29 Nov 2019) In Wikipedia Retrieved from https://en.wikipedia.org/w/index.php?title=Left_bundle_branch_block&oldid=928414830

  25. Sharma M, San Tan R, Acharya UR (2018) A novel automated diagnostic system for classification of myocardial infarction ECG signals using an optimal biorthogonal filter bank. Comput Biol Med 102:341–356

    Article  Google Scholar 

  26. Dohare AK, Kumar V, Kumar R (2018) Detection of myocardial infarction in 12 lead ECG using support vector machine. Appl Soft Comput 64:138–147

    Article  Google Scholar 

  27. PhysioNet MITBIH (2017) Arrhythmia database. https://www.physionet.org/physiobank/database/mitdb

  28. Ribeiro AH, Ribeiro MH, Paixão GM, Oliveira DM, Gomes PR, Canazart JA, Schön TB (2020) Automatic diagnosis of the 12-lead ECG using a deep neural network. Nat Commun 11(1):1–9

    Article  Google Scholar 

  29. Ribeiro AH, Ribeiro MH, Gabriela M, Oliveira DM, Gomes PR (2020a) Annotated 12-lead ECG dataset. URL: https://zenodo.org/record/3765780. Xx1kLZ4zbIU/

  30. Hao P, Gao X, Li Z, Zhang J, Wu F, Bai C (2020) Multi-branch fusion network for myocardial infarction screening from 12-lead ECG images. Comput Methods Programs Biomed 184:105286

    Google Scholar 

  31. Padhy S, Dandapat S (2017) Third-order tensor based analysis of multilead ECG for classification of myocardial infarction. Biomed Signal Process Control 31:71–78

    Article  Google Scholar 

  32. Kayikcioglu İ, Akdeniz F, Köse C, Kayikcioglu T (2020) Time-frequency approach to ECG classification of myocardial infarction. Comput Electr Eng 84:106621

    Google Scholar 

  33. Luo Y, Hargraves RH, Belle A, Bai O, Qi X, Ward KR, ... Najarian K (2013) A hierarchical method for removal of baseline drift from biomedical signals: application in ECG analysis. Sci World J 2013

    Google Scholar 

  34. Sedaaghi MH, Khosravi M (July 2003) Morphological ECG signal preprocessing with more efficient baseline drift removal. In: Proceedings of the 7th. IASTED international conference, ASC. pp 205–209

    Google Scholar 

  35. Zhang ZN, Zhang H, Zhuang TG (Oct 1987) One-dimensional signal extraction of paper-written ECG image and its archiving. In: Visual communications and image processing II, vol 845. International Society for Optics and Photonics, pp 419–423

    Google Scholar 

  36. Hartati S, Wardoyo R, Setianto BY (2017) The feature extraction to determine the wave’s peaks in the electrocardiogram graphic image. Int J Image, Graphics Signal Proc 9(6):1

    Article  Google Scholar 

  37. Sowmya V, Govind D, Soman KP (2017) Significance of incorporating chrominance information for effective color-to-grayscale image conversion. SIViP 11(1):129–136

    Article  Google Scholar 

  38. Jothiaruna N, Sundar KJA, Karthikeyan B (2019) A segmentation method for disease spot images incorporating chrominance in comprehensive color feature and region growing. Comput Electr Agric 165:104934

    Google Scholar 

  39. Wang S, Zhang S, Li Z, Huang L, Wei Z (2020) Automatic digital ECG signal extraction and normal QRS recognition from real scene ECG images. Comput Methods Programs Biomed 187:105254

    Google Scholar 

  40. Zhao Y, Xiong J, Hou Y, Zhu M, Lu Y, Xu Y, Liu Z (2020) Early detection of ST-segment elevated myocardial infarction by artificial intelligence with 12-lead electrocardiogram. Int J Cardiol

    Google Scholar 

  41. Hong S, Zhou Y, Shang J, Xiao C, Sun J (2020) Opportunities and challenges of deep learning methods for electrocardiogram data: a systematic review. Comput Biol Med 103801

    Google Scholar 

  42. Sun L, Lu Y, Yang K, Li S (2012) ECG analysis using multiple instance learning for myocardial infarction detection. IEEE Trans Biomed Eng 59(12):3348–3356

    Article  Google Scholar 

  43. Chang PC, Lin JJ, Hsieh JC, Weng J (2012) Myocardial infarction classification with multi-lead ECG using hidden Markov models and Gaussian mixture models. Appl Soft Comput 12(10):3165–3175

    Article  Google Scholar 

  44. Tripathy RK, Bhattacharyya A, Pachori RB (2019) A novel approach for detection of myocardial infarction from ECG signals of multiple electrodes. IEEE Sens J 19(12):4509–4517

    Article  Google Scholar 

  45. Kora P, Kalva SR (2015) Improved Bat algorithm for the detection of myocardial infarction. Springerplus 4(1):666

    Article  Google Scholar 

  46. Ramli AB, Ahmad PA (Jan 2003) Correlation analysis for abnormal ECG signal features extraction. In: 4th national conference of telecommunication technology, 2003. NCTT 2003 Proceedings. IEEE, pp 232–237

    Google Scholar 

  47. Sharma LN, Tripathy RK, Dandapat S (2015) Multiscale energy and eigenspace approach to detection and localization of myocardial infarction. IEEE Trans Biomed Eng 62(7):1827–1837

    Article  Google Scholar 

  48. Dhawan A, Wenzel B, George S, Gussak I, Bojovic B, Panescu D (Aug 2012) Detection of acute myocardial infarction from serial ECG using multilayer support vector machine. In: 2012 annual international conference of the IEEE engineering in medicine and biology society. IEEE, pp 2704–2707

    Google Scholar 

  49. Makimoto H, Höckmann M, Lin T, Glöckner D, Gerguri S, Clasen L, Angendohr S (2020) Performance of a convolutional neural network derived from an ecG database in recognizing myocardial infarction. Sci Rep 10(1):1–9

    Article  Google Scholar 

  50. Park Y, Yun ID, Kang SH (2019) Preprocessing method for performance enhancement in cnn-based stemi detection from 12-lead ecg. IEEE Access 7:99964–99977

    Article  Google Scholar 

  51. Avanzato R, Beritelli F (2020) Automatic ECG diagnosis using convolutional neural network. Electronics 9(6):951

    Article  Google Scholar 

  52. Li D, Zhang J, Zhang Q, Wei X (Oct 2017) Classification of ECG signals based on 1D convolution neural network. In: 2017 IEEE 19th international conference on e-health networking, applications and services (Healthcom). IEEE, pp 1–6

    Google Scholar 

  53. Kora P (2017) ECG based myocardial infarction detection using hybrid firefly algorithm. Comput Methods Programs Biomed 152:141–148

    Article  Google Scholar 

  54. Acharya UR, Fujita H, Oh SL, Hagiwara Y, Tan JH, Adam M (2017) Application of deep convolutional neural network for automated detection of myocardial infarction using ECG signals. Inf Sci 415:190–198

    Article  Google Scholar 

  55. Jayachandran ES (2010) Analysis of myocardial infarction using discrete wavelet transform. J Med Syst 34(6):985–992

    Article  Google Scholar 

  56. Baloglu UB, Talo M, Yildirim O, San Tan R, Acharya UR (2019) Classification of myocardial infarction with multi-lead ECG signals and deep CNN. Pattern Recogn Lett 122:23–30

    Article  Google Scholar 

  57. Baccouche A, Garcia-Zapirain B, Castillo Olea C, Elmaghraby A (2020) Ensemble deep learning models for heart disease classification: a case study from Mexico. Information 11(4):207

    Google Scholar 

  58. Mostayed A, Luo J, Shu X, Wee W (2018) Classification of 12-lead ECG signals with Bi-directional LSTM network. arXiv preprint arXiv:1811.02090

  59. Novak B, Ilić V, Pavković B (May 2020) YOLOv3 algorithm with additional convolutional neural network trained for traffic sign recognition. In: 2020 zooming innovation in consumer technologies conference (ZINC). IEEE, pp 165–168

    Google Scholar 

  60. Magnusson LV, Olsson R (July 2016) Improving the canny edge detector using automatic programming: improving non-max suppression. In: Proceedings of the genetic and evolutionary computation conference 2016. pp 461–468

    Google Scholar 

  61. Liu W, Anguelov D, Erhan D, Szegedy C, Reed S, Fu CY, Berg AC (Oct 2016) Ssd: single shot multibox detector. In: European conference on computer vision. Springer, Cham, pp 21–37

    Google Scholar 

  62. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: CVPR. pp 770–778

    Google Scholar 

  63. Jun TJ, Nguyen HM, Kang D, Kim D, Kim Y (2018) ECG arrhythmia classification using a 2-d convolutional neural network, arxiv.org/abs/1804.06812

    Google Scholar 

  64. Huang G, Liu Z, Maaten LVD, Weinberger KQ (2017) Densely connected convolutional networks. In: CVPR. pp 4700–4708

    Google Scholar 

  65. Golrizkhatami Z, Acan A (2018) ECG classification using three-level fusion of different feature descriptors. Expert Syst Appl 114:54–64

    Article  Google Scholar 

  66. Redmon J, Divvala S, Girshick R, Farhadi A (2016) You only look once: unified, real-time object detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp 779–788

    Google Scholar 

  67. Erhan D, Szegedy C, Toshev A, Anguelov D (2014) Scalable object detection using deep neural networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp 2147–2154

    Google Scholar 

  68. Barrett BJ, Parfrey PS, Vavasour HM, O’Dea F, Kent G, Stone E (1992) A comparison of nonionic, low-osmolality radiocontrast agents with ionic, high-osmolality agents during cardiac catheterization. N Engl J Med 326(7):431–436

    Article  Google Scholar 

  69. Tavakol M, Ashraf S, Brener SJ (2012) Risks and complications of coronary angiography: a comprehensive review. Global J Health Sci 4(1):65

    Google Scholar 

  70. Sorensen R, Hansen ML, Abildstrom SZ, Hvelplund A, Andersson C, Jørgensen C, Gislason GH (2009) Risk of bleeding in patients with acute myocardial infarction treated with different combinations of aspirin, clopidogrel, and vitamin K antagonists in Denmark: a retrospective analysis of nationwide registry data. The Lancet 374(9706):1967–1974

    Article  Google Scholar 

  71. Twerenbold R, Boeddinghaus J, Nestelberger T, Wildi K, Gimenez MR, Badertscher P, Mueller C (2017) Clinical use of high-sensitivity cardiac troponin in patients with suspected myocardial infarction. J Am Coll Cardiol 70(8):996–1012

    Article  Google Scholar 

  72. Sandoval Y, Smith SW, Love SA, Sexter A, Schulz K, Apple FS (2017) Single high-sensitivity cardiac troponin I to rule out acute myocardial infarction. Am J Med 130(9):1076–1083

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jothiaruna, N., Leema, A.A. (2022). Meta-Analysis to Prognosis Myocardial Infarction Using 12 Lead ECG. In: Satyanarayana, C., Samanta, D., Gao, XZ., Kapoor, R.K. (eds) High Performance Computing and Networking. Lecture Notes in Electrical Engineering, vol 853. Springer, Singapore. https://doi.org/10.1007/978-981-16-9885-9_39

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-9885-9_39

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-9884-2

  • Online ISBN: 978-981-16-9885-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics