Nothing Special   »   [go: up one dir, main page]

Skip to main content

Customer Segmentation via Data Mining Techniques: State-of-the-Art Review

  • Conference paper
  • First Online:
Computational Intelligence in Data Mining

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 281))

Abstract

Customers are more vigilant, intelligent, and dynamic in society. They change their preferences and habits according to their needs. Knowing the needs of customers is an important part of marketing where a company should discover the loyal customers in this heterogeneity. The concept of dividing heterogeneity into homogeneous forms is termed as customer segmentation. Customer segmentation is an integral part of marketing where companies can easily develop relationships with customers with a huge set of customer data in an organized manner. Understanding the customer’s hidden knowledge is a resourceful idea of computational analysis where accurate information could be optimized for the taste and preference of the customer. This type of computational analysis is termed as data mining. This paper discussed on a systematic review of customer segmentation via data mining techniques. It is a systematic review of supervised, unsupervised and other data mining techniques used in segmentation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. G. Lefait, T. Kechadi, Customer segmentation architecture based on clustering techniques, in 2010 Fourth International Conference on Digital Society (IEEE, 2010). https://doi.org/10.1109/ICDS.2010.47

  2. P.Q. Brito et al., Customer segmentation in a large database of an online customized fashion business. Robot. Comput.-Integr. Manuf. 36, 93–100 (2015). https://doi.org/10.1016/j.rcim.2014.12.014

  3. W.R. Smith, Product differentiation and market segmentation as alternative marketing strategies. J. Mark. 21(1), 3–8 (1956). https://doi.org/10.1177/002224295602100102

  4. A. Nairn, P. Berthon, Creating the customer: the influence of advertising on consumer market segments—evidence and ethics. J. Bus. Ethics 42(1), 83–100 (2003). https://doi.org/10.1023/A:1021620825950

    Article  Google Scholar 

  5. A. Hiziroglu, Soft computing applications in customer segmentation: state-of-art review and critique. Expert Syst. Appl. 40(16), 6491–6507 (2013). https://doi.org/10.1016/j.eswa.2013.05.052

    Article  Google Scholar 

  6. A. Hajiha, R. Radfar, S.S. Malayeri, Data mining application for customer segmentation based on loyalty: an Iranian food industry case study, in 2011 IEEE International Conference on Industrial Engineering and Engineering Management (IEEE, 2011). https://doi.org/10.1109/IEEM.2011.6117968

  7. V. Golmah, G. Mirhashemi, Implementing a data mining solution to customer segmentation for decayable products—a case study for a textile firm. Int. J. Database Theory Appl. 5(3), 73–90 (2012)

    Google Scholar 

  8. M.M.T.M. Hassan, M. Tabasum, Customer profiling and segmentation in retail banks using data mining techniques. Int. J. Adv. Res. Comput. Sci. 9(4), 24–29 (2018)

    Article  Google Scholar 

  9. S.Y. Hosseini, A.Z. Bideh, A data mining approach for segmentation-based importance-performance analysis (SOM–BPNN–IPA): a new framework for developing customer retention strategies. Serv. Bus. 8(2), 295–312 (2014). https://doi.org/10.1007/s11628-013-0197-7

  10. M. Carnein, H. Trautmann, Customer segmentation based on transactional data using stream clustering, in Pacific-Asia Conference on Knowledge Discovery and Data Mining (Springer, Cham, 2019). https://doi.org/10.1007/978-3-030-16148-4_22

  11. W. Wang, S. Fan, Application of data mining technique in customer segmentation of shipping enterprises, in 2010 2nd International Workshop on Database Technology and Applications (IEEE, 2010). https://doi.org/10.1109/DBTA.2010.5659081

  12. J. Ranjan, R. Agarwal, Application of segmentation in customer relationship management: a data mining perspective. Int. J. Electron. Custom. Relat. Manag. 3(4), 402–414 (2009). https://doi.org/10.1504/IJECRM.2009.029298

    Article  Google Scholar 

  13. L.-S. Chen, C.-C. Hsu, M.-C. Chen, Customer segmentation and classification from blogs by using data mining: an example of VOIP phone. Cybern. Syst. Int. J. 40(7), 608–632 (2009). https://doi.org/10.1080/01969720903152593

    Article  MATH  Google Scholar 

  14. Z. Yihua, Vip customer segmentation based on data mining in mobile-communications industry, in 2010 5th International Conference on Computer Science & Education (IEEE, 2010). https://doi.org/10.1109/ICCSE.2010.5593669

  15. C. Qiuru et al., Telecom customer segmentation based on cluster analysis, in 2012 International Conference on Computer Science and Information Processing (CSIP) (IEEE, 2012). https://doi.org/10.1109/CSIP.2012.6309069

  16. H. Gong, Q. Xia, Study on application of customer segmentation based on data mining technology, in 2009 ETP International Conference on Future Computer and Communication (IEEE, 2009). https://doi.org/10.1109/FCC.2009.66

  17. X. Lai, Segmentation study on enterprise customers based on data mining technology, in 2009 First International Workshop on Database Technology and Applications (IEEE, 2009). https://doi.org/10.1109/DBTA.2009.96

  18. H. Hwang, T. Jung, E. Suh, An LTV model and customer segmentation based on customer value: a case study on the wireless telecommunication industry. Expert Syst. Appl. 26(2), 181–188 (2004). https://doi.org/10.1016/S0957-4174(03)00133-7

    Article  Google Scholar 

  19. C.-H. Cheng, Y.-S. Chen, Classifying the segmentation of customer value via RFM model and RS theory. Expert Syst. Appl. 36(3), 4176–4184 (2009). https://doi.org/10.1016/j.eswa.2008.04.003

    Article  Google Scholar 

  20. S. Kelly, Mining data to discover customer segments. Interact. Mark. 4(3), 235–242 (2003). https://doi.org/10.1057/palgrave.im.4340185

    Article  MathSciNet  Google Scholar 

  21. R.J. Calantone, J.S. Johar, Seasonal segmentation of the tourism market using a benefit segmentation framework. J. Travel Res. 23(2), 14–24 (1984). https://doi.org/10.1177/004728758402300203

  22. W. Wang et al., A weakly supervised approach for object detection based on soft-label boosting, in 2013 IEEE Workshop on Applications of Computer Vision (WACV) (IEEE, 2013). https://doi.org/10.1109/WACV.2013.6475037

  23. N. Malandrakis et al., A supervised approach to movie emotion tracking, in 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (IEEE, 2011). https://doi.org/10.1109/ICASSP.2011.5946961

  24. L. Yang et al., A supervised approach to the evaluation of image segmentation methods, in International Conference on Computer Analysis of Images and Patterns (Springer, Berlin, Heidelberg, 1995). https://doi.org/10.1007/3-540-60268-2_377

  25. Md.S. Islam et al., Supervised approach of sentimentality extraction from Bengali Facebook status, in 2016 19th International Conference on Computer and Information Technology (ICCIT) (IEEE, 2016). https://doi.org/10.1109/ICCITECHN.2016.7860228

  26. D. Turnbull et al., A supervised approach for detecting boundaries in music using difference features and boosting, in ISMIR (2007)

    Google Scholar 

  27. L. Yang et al., A supervised approach to the evaluation of image segmentation methods, in International Conference on Computer Analysis of Images and Patterns (Springer, Berlin, Heidelberg, 1995). https://doi.org/10.1016/j.neucom.2011.09.002

  28. I. Monroy et al., A semi-supervised approach to fault diagnosis for chemical processes. Comput. Chem. Eng. 34(5), 631–642 (2010). https://doi.org/10.1016/j.compchemeng.2009.12.008

  29. L. Sun et al., A novel weakly-supervised approach for RGB-D-based nuclear waste object detection. IEEE Sens. J. 19(9), 3487–3500 (2018). https://doi.org/10.1109/JSEN.2018.2888815

  30. A.J. Ferreira, M.A.T. Figueiredo, An unsupervised approach to feature discretization and selection. Pattern Recogn. 45(9), 3048–3060 (2012). https://doi.org/10.1016/j.patcog.2011.12.008

  31. E.N. Nasibov, G. Ulutagay, A new unsupervised approach for fuzzy clustering. Fuzzy Sets Syst. 158(19), 2118–2133 (2007). https://doi.org/10.1016/j.fss.2007.02.019

    Article  MathSciNet  MATH  Google Scholar 

  32. Ke. Hu, D.L. Wang, An unsupervised approach to cochannel speech separation. IEEE Trans. Audio Speech Lang. Process. 21(1), 122–131 (2012). https://doi.org/10.1109/TASL.2012.2215591

    Article  Google Scholar 

  33. K. Ganesan, C.X. Zhai, E. Viegas, Micropinion generation: an unsupervised approach to generating ultra-concise summaries of opinions, in Proceedings of the 21st International Conference on World Wide Web (2012)

    Google Scholar 

  34. D. Trabelsi et al., An unsupervised approach for automatic activity recognition based on hidden Markov model regression. IEEE Trans. Autom. Sci. Eng. 10(3), 829–835 (2013). https://doi.org/10.1109/TASE.2013.2256349

  35. R.M. Alguliyev, R.M. Aliguliyev, N.R. Isazade, An unsupervised approach to generating generic summaries of documents. Appl. Soft Comput. 34, 236–250 (2015). https://doi.org/10.1016/j.asoc.2015.04.050

    Article  Google Scholar 

  36. J.A. McCarty, M. Hastak, Segmentation approaches in data-mining: a comparison of RFM, CHAID, and logistic regression. J. Bus. Res. 60(6), 656–662 (2007). https://doi.org/10.1016/j.jbusres.2006.06.015

    Article  Google Scholar 

  37. W. Li et al., Credit card customer segmentation and target marketing based on data mining, in 2010 International Conference on Computational Intelligence and Security (IEEE, 2010). https://doi.org/10.1109/CIS.2010.23

  38. Z. Lu et al., Customer segmentation algorithm based on data mining for electric vehicles, in 2019 IEEE 4th International Conference on Cloud Computing and Big Data Analysis (ICCCBDA) (IEEE, 2019). https://doi.org/10.1109/ICCCBDA.2019.8725737

  39. V.L. Miguéis, A.S. Camanho, J. Falcão e Cunha, Customer data mining for lifestyle segmentation. Expert Syst. Appl. 39(10), 9359–9366 (2012). https://doi.org/10.1016/j.eswa.2012.02.133

  40. C.-Y Chiu et al., An intelligent market segmentation system using k-means and particle swarm optimization. Expert Syst. Appl. 36(3), 4558–4565 (2009). https://doi.org/10.1016/j.eswa.2008.05.029

  41. S. Dutta, S. Bhattacharya, K.K. Guin, Data mining in market segmentation: a literature review and suggestions, in Proceedings of Fourth International Conference on Soft Computing for Problem Solving (Springer, New Delhi, 2015). https://doi.org/10.1007/978-81-322-2217-0_8

  42. E.R. Swenson, N.D. Bastian, H.B. Nembhard, Healthcare market segmentation and data mining: a systematic review. Health Mark. Q. 35(3), 186–208 (2018). https://doi.org/10.1080/07359683.2018.1514734

    Article  Google Scholar 

  43. S. Mckechnie, Integrating intelligent systems into marketing to support market segmentation decisions. Intell. Syst. Account. Finance Manag. Int. J. 14(3), 117–127 (2006). https://doi.org/10.1002/isaf.280

    Article  Google Scholar 

  44. P. Kotler, K.L. Keller, Marketing Management, ed. by W. Lassar, international 11th edn. (Prentice Hall, New Jersey, 2003)

    Google Scholar 

  45. M. Wedel, W.A. Kamakura, Market Segmentation: Conceptual and Methodological Foundations, vol. 8 (Springer Science & Business Media, 2012)

    Google Scholar 

  46. Y. Wind, Issues and advances in segmentation research. J. Mark. Res. 15(3), 317–337 (1978). https://doi.org/10.1177/002224377801500302

  47. L. Alfansi, A. Sargeant, Market segmentation in the Indonesian banking sector: the relationship between demographics and desired customer benefits. Int. J. Bank Mark. (2000). https://doi.org/10.1108/02652320010322976

  48. D.G. Tonks, Validity and the design of market segments. J. Mark. Manag. 25(3–4), 341–356 (2009). https://doi.org/10.1362/026725709X429782

    Article  Google Scholar 

  49. M. Taks, J. Scheerder, Youth sports participation styles and market segmentation profiles: evidence and applications. Eur. Sport Manag. Q. 6(2), 85–121 (2006). https://doi.org/10.1080/16184740600954080

    Article  Google Scholar 

  50. J. Bruwer, E. Li, Wine-related lifestyle (WRL) market segmentation: demographic and behavioural factors. J. Wine Res. 18(1), 19–34 (2007). https://doi.org/10.1080/09571260701526865

    Article  Google Scholar 

  51. P. Vyncke, Lifestyle segmentation: from attitudes, interests and opinions, to values, aesthetic styles, life visions and media preferences. Eur. J. Commun. 17(4), 445–463 (2002). https://doi.org/10.1177/02673231020170040301

  52. A. Vellido, P.J.G. Lisboa, K. Meehan, Segmentation of the on-line shopping market using neural networks. Expert Syst. Appl. 17(4), 303–314 (1999). https://doi.org/10.1016/S0957-4174(99)00042-1

  53. J. Swait, A structural equation model of latent segmentation and product choice for cross-sectional revealed preference choice data. J. Retail. Consum. Serv. 1(2), 77–89 (1994). https://doi.org/10.1016/0969-6989(94)90002-7

    Article  Google Scholar 

  54. T. Teichert, E. Shehu, I. von Wartburg, Customer segmentation revisited: the case of the airline industry. Transp. Res. Part A Policy Pract. 42(1), 227–242 (2008). https://doi.org/10.1016/j.tra.2007.08.003

  55. A. Lindridge, S. Dibb, Is ‘culture’ a justifiable variable for market segmentation? A cross-cultural example. J. Consum. Behav. Int. Res. Rev. 2(3), 269–286 (2003). https://doi.org/10.1002/cb.106

    Article  Google Scholar 

  56. F. Casarin, A. Moretti, An international review of cultural consumption research. SSRN Electron. J. Department of Management, Università Ca’ Foscari Venezia working paper 12 (2011)

    Google Scholar 

  57. A.M. Gonzalez, L. Bello, The construct “lifestyle” in market segmentation: the behaviour of tourist consumers. Eur. J. Mark. (2002). https://doi.org/10.1108/03090560210412700

  58. D.B. Valentine, T.L. Powers, Generation Y values and lifestyle segments. J. Consum. Mark. (2013). https://doi.org/10.1108/JCM-07-2013-0650

  59. U.R. Orth et al., Promoting brand benefits: the role of consumer psychographics and lifestyle. J. Consum. Mark. (2004). https://doi.org/10.1108/07363760410525669

  60. C.-S. Yu, Construction and validation of an e-lifestyle instrument. Internet Res. (2011). https://doi.org/10.1108/10662241111139282

  61. A.M. Thompson, P.F. Kaminski, Psychographic and lifestyle antecedents of service quality expectations: a segmentation approach. J. Serv. Mark. (1993). https://doi.org/10.1108/08876049310047742

  62. J.L.M. Tam, S.H.C. Tai, Research note: the psychographic segmentation of the female market in Greater China. Int. Mark. Rev. (1998). https://doi.org/10.1108/02651339810205258

  63. T.F. Srihadi, D. Sukandar, A.W. Soehadi, Segmentation of the tourism market for Jakarta: classification of foreign visitors’ lifestyle typologies. Tour. Manag. Perspect. 19, 32–39 (2016). https://doi.org/10.1016/j.tmp.2016.03.005

  64. B. Oates, L. Shufeldt, B. Vaught, A psychographic study of the elderly and retail store attributes. J. Consum. Mark. (1996). https://doi.org/10.1108/07363769610152572

  65. T.M.M. Verhallen, R.T. Frambach, J. Prabhu, Strategy-based segmentation of industrial markets. Ind. Mark. Manag. 27(4), 305–313 (1998). https://doi.org/10.1016/S0019-8501(97)00064-3

  66. E.J. Cheron, R. McTavish, J. Perrien, Segmentation of bank commercial markets. Int. J. Bank Mark. (1989). https://doi.org/10.1108/EUM0000000001458

  67. S.W. Clopton, J.E. Stoddard, D. Dave, Event preferences among arts patrons: implications for market segmentation and arts management. Int. J. Arts Manag. 48–59 (2006)

    Google Scholar 

  68. A. Buratto, L. Grosset, B. Viscolani, Advertising a new product in a segmented market. Eur. J. Oper. Res. 175(2), 1262–1267 (2006)

    Article  Google Scholar 

  69. R. Sánchez-Fernández, M. Ángeles Iniesta-Bonillo, A. Cervera-Taulet, Exploring the concept of perceived sustainability at tourist destinations: a market segmentation approach. J. Travel Tour. Mark. 36(2), 176–190 (2019)

    Google Scholar 

  70. K. Bijak, L.C. Thomas, Does segmentation always improve model performance in credit scoring? Expert Syst. Appl. 39(3), 2433–2442 (2012). https://doi.org/10.1016/j.eswa.2011.08.093

    Article  Google Scholar 

  71. A. Sell, P. Walden, Segmentation bases in the mobile services market: attitudes in, demographics out, in 2012 45th Hawaii International Conference on System Sciences (IEEE, 2012)

    Google Scholar 

  72. A. Sell, J. Mezei, P. Walden, An attitude-based latent class segmentation analysis of mobile phone users. Telemat. Inform. 31(2), 209–219 (2014)

    Article  Google Scholar 

  73. D.J. Ketchen, C.L. Shook, The application of cluster analysis in strategic management research: an analysis and critique. Strateg. Manag. J. 17(6), 441–458 (1996)

    Article  Google Scholar 

  74. G. Punj, D.W. Stewart, Cluster analysis in marketing research: review and suggestions for application. J. Mark. Res. 20(2), 134–148 (1983)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janmenjoy Nayak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Das, S., Nayak, J. (2022). Customer Segmentation via Data Mining Techniques: State-of-the-Art Review. In: Nayak, J., Behera, H., Naik, B., Vimal, S., Pelusi, D. (eds) Computational Intelligence in Data Mining. Smart Innovation, Systems and Technologies, vol 281. Springer, Singapore. https://doi.org/10.1007/978-981-16-9447-9_38

Download citation

Publish with us

Policies and ethics