Nothing Special   »   [go: up one dir, main page]

Skip to main content

Synthetic Data Augmentation of MRI using Generative Variational Autoencoder for Parkinson’s Disease Detection

  • Conference paper
  • First Online:
Evolution in Computational Intelligence

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 267))

Abstract

Machine learning models are being increasingly proposed for the automated classification of Parkinson’s disease from brain imaging data such as magnetic resonance imaging (MRI). However, the problem of class imbalance is a major setback in deriving the maximum benefit from using these techniques. We propose in overcoming the class imbalance between Parkinson’s disease (PD) and normal cohorts (NC) subjects by using variational autoencoders (VAEs) as the generative model that follows a probabilistic regeneration and aim to experiment over the effect of latent variables in generating new MR images of the subjects to improve the detection of PD. The efficiency of the proposed method with and without data augmentation is compared and evaluated using a deep learning classifier model at the subject level. The results obtained using a model trained with data augmentation show a significant increase of 6% in the performance of the classification model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Pinter, B., et al.: Mortality in Parkinson’s disease: a 38-year follow-up study. Mov. Disord. 30(2), 266–269 (2015)

    Google Scholar 

  2. Kose, U., Deperlioglu, O., Alzubi, J., Patrut, B.: Diagnosing parkinson by using deep autoencoder neural network. In: Deep Learning for Medical Decision Support Systems. Studies in Computational Intelligence, vol 909. Springer, Singapore (2021)

    Google Scholar 

  3. Pyatigorskaya, N., et al.: A review of the use of magnetic resonance imaging in Parkinson’s disease. Ther. Adv. Neurol. Disord. 7(4), 206–220 (2014)

    Google Scholar 

  4. Shinde, S., et al.: Predictive markers for Parkinson’s disease using deep neural nets on neuromelanin sensitive MRI. NeuroImage: Clin. 22, 101748 (2019)

    Google Scholar 

  5. Xu, Q., et al.: Different latent variables learning in variational autoencoder. In: 2017 4th International Conference on Information, Cybernetics and Computational Social Systems (ICCSS). IEEE (2017)

    Google Scholar 

  6. Harini, N., Ramji, B., Sriram, S., Sowmya, V., Soman, K.: Musculoskeletal radiographs classification using deep learning. In: Deep Learning for Data Analytics, pp. 79-98. Elsevier (2020)

    Google Scholar 

  7. Gopika, P., Sowmya, V., et al.: Transferable approach for cardiac disease classification using deep learning. In: Deep Learning Techniques for Biomedical and Health Informatics, pp. 285–303. Academic Press (2020)

    Google Scholar 

  8. Simon, A., Ravi, V., Vishvanathan, S., Sowmya, K.P.: Shallow CNN with LSTM layer for tuberculosis detection in microscopic image. Int. J. Rec. Technol. Eng. 7, 56–60 (2019)

    Google Scholar 

  9. Sivaranjini, S., Sujatha, C.M.: Deep learning based diagnosis of Parkinson’s disease using convolutional neural network. Multimed. Tools Appl. 79(21), 15467–15479 (2020)

    Google Scholar 

  10. Rajanbabu, K., Veetil, I.K., Sowmya, V., Gopalakrishnan, E.A., Soman, K.P.: Ensemble of deep transfer learning models for parkinson’s disease classification. In: Accepted in Fourth International Conference Soft Computing and Signal Processing (ICSCSP) (2020)

    Google Scholar 

  11. Madan, Y., Veetil, I.K., et al.: Deep learning based approach for Parkinson’s Disease Detection using Region of Interest. In: Accepted in 4th International Conference on Intelligent Sustainable Systems (ICISS) (2021)

    Google Scholar 

  12. Bhateja, V., et al.: Haralick features-based classification of mammograms using SVM. In: Information Systems Design and Intelligent Applications, pp. 787–795. Springer, Singapore (2018)

    Google Scholar 

  13. Balasubramanian, R., et al.: Analysis of adversarial based augmentation for diabetic retinopathy disease grading. In: 2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT). IEEE (2020)

    Google Scholar 

  14. Qiang, N., Dong, Q., Sun, Y., Ge, B., Liu, T.: deep variational autoencoder for modeling functional brain networks and ADHD identification. In: 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI), pp. 554–557 (2020)

    Google Scholar 

  15. Fedorov, A., et al.: 3D slicer as an image computing platform for the quantitative imaging network. Magn. Reson. Imag. 30(9), 1323–1341 (2012)

    Google Scholar 

  16. McCarthy, P.: FSLeyes (2020)

    Google Scholar 

  17. Islam, J., Zhang, Y.: GAN-based synthetic brain PET image generation. Brain Inform. 7, 1–12 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Madan, Y., Veetil, I.K., V, S., EA, G., KP, S. (2022). Synthetic Data Augmentation of MRI using Generative Variational Autoencoder for Parkinson’s Disease Detection. In: Bhateja, V., Tang, J., Satapathy, S.C., Peer, P., Das, R. (eds) Evolution in Computational Intelligence. Smart Innovation, Systems and Technologies, vol 267. Springer, Singapore. https://doi.org/10.1007/978-981-16-6616-2_16

Download citation

Publish with us

Policies and ethics