Abstract
Anomaly detection is an important task, which tackles the problem of discovering “different from normal” signals or patterns by analyzing a massive amount of data, thereby identifying and preventing major faults. Anomaly detection is applied to numerous high-impact applications in areas such as cyber-security, finance, e-commerce, social network, industrial monitoring, and many more mission-critical tasks. While multiple techniques have been developed in past decades in addressing unstructured collections of multi-dimensional data, graph-structure-aware techniques have recently attracted considerable attention. A number of novel techniques have been developed for anomaly detection by leveraging the graph structure. Recently, graph neural networks (GNNs), as a powerful deep-learning-based graph representation technique, has demonstrated superiority in leveraging the graph structure and been used in anomaly detection. In this chapter, we provide a general, comprehensive, and structured overview of the existing works that apply GNNs in anomaly detection.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this chapter
Cite this chapter
Wang, S., Yu, P.S. (2022). Graph Neural Networks in Anomaly Detection. In: Wu, L., Cui, P., Pei, J., Zhao, L. (eds) Graph Neural Networks: Foundations, Frontiers, and Applications. Springer, Singapore. https://doi.org/10.1007/978-981-16-6054-2_26
Download citation
DOI: https://doi.org/10.1007/978-981-16-6054-2_26
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-16-6053-5
Online ISBN: 978-981-16-6054-2
eBook Packages: Computer ScienceComputer Science (R0)