Abstract
Swarm intelligence is a complex phenomenon involving a population of agents (homogeneous or heterogeneous) and their local interaction.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Notes
- 1.
ISO Flock Library is free and open to use and can be accessed here: http://swarms.cc/documentation/isoSynth/.
- 2.
ISO Synth Library is free and open to use and can be accessed here: http://swarms.cc/documentation/isoSynth/.
References
al-Rifaie, M. M., Bishop, J. M., & Caines, S. (2012). Creativity and autonomy in swarm intelligence systems. Cognitive Computation, 4(3), 320–331. https://doi.org/10.1007/s12559-012-9130-y.
al-Rifaie, M. M., & Bishop, J. M. (2013a, April). Swarmic sketches and attention mechanism. In International Conference on Evolutionary and Biologically Inspired Music and Art (pp. 8596). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36955-1_8.
al-Rifaie, M. M., & Bishop, J. M. (2013b). Swarmic paintings and colour attention. In International Conference on Evolutionary and Biologically Inspired Music and Art (pp. 97–108). Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-642-36955-1_9.
al-Rifaie, A. M., & Al-Rifaie, M. M. (2015). Generative music with stochastic diffusion search. In International Conference on Evolutionary and Biologically Inspired Music and Art (pp. 1–14). Cham: Springer. https://doi.org/10.1007/978-3-319-16498-4_1.
Aupetit, S., Bordeau, V., Monmarché, N., Slimane, M., & Venturini, G. (2003, December). Interactive evolution of ant paintings. In The 2003 Congress on Evolutionary Computation, CEC’03. (Vol. 2, pp. 1376–1383). IEEE.
Bishop, J. M. (1989). Stochastic searching networks. In 1989 First IEE International Conference on Artificial Neural Networks, (Conf. Publ. No. 313) (pp. 329–331). IET.
Bisig, D., Schacher, J. C., Neukom, M. (2011). Flowspace-a hybrid ecosystem. In NIME (pp. 260–263).
Blackwell, T. (2003). Swarm music: Improvised music with multi-swarms. Artificial Intelligence and the Simulation of Behaviour, University of Wales, 10, 142–158.
Blackwell, T. (2007). Swarming and music. In Evolutionary Computer Music (pp. 194–217). Springer. https://doi.org/10.1007/978-1-84628-600-1_9.
Blackwell, T. (2008). Swarm granulation. In The Art of Artificial Evolution (pp. 103–122). Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-540-72877-1_5.
Blackwell, T. M., & Bentley, P. (2002, May). Improvised music with swarms. In Proceedings of the 2002 Congress on Evolutionary Computation. CEC’02 (Cat. No. 02TH8600) (Vol. 2, pp. 1462–1467). IEEE.
Boyd, J. E., Hushlak, G., & Jacob, C. J. (2004). SwarmArt: interactive art from swarm intelligence. In Proceedings of the 12th Annual ACM International Conference on Multimedia (pp. 628–635). ACM. https://doi.org/10.1145/1027527.1027674.
Brownlee, J. (2012). Clever algorithms, nature-inspired programming recipes, open source book.
Braitenberg, V. (1986). Vehicles: Experiments in synthetic psychology. MIT press.
Burton, J. L., & Franks, N. R. (1985). The foraging ecology of the army ant Eciton rapax: an ergonomic enigma? Ecological Entomology, 10(2), 131–141.
Chan, M. T., Gorbet, R., Beesley, P., & Kulič, D. (2015). Curiosity-based learning algorithm for distributed interactive sculptural systems. In 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 3435–3441). IEEE. https://doi.org/10.1109/IROS.2015.7353856.
Chialvo, D. R., & Millonas, M. M. (1995). How swarms build cognitive maps. In The Biology and Technology of Intelligent Autonomous Agents (pp. 439–450). Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-642-79629-6_20.
Chu, X., Wu, T., Weir, J. D., Shi, Y., Niu, B., & Li, L. (2018). Learning-interaction-diversification framework for swarm intelligence optimizers: A unified perspective. Neural Computing and Applications, 1-21. https://doi.org/10.1007/s00521-018-3657-0.
Couzin, I. D., Krause, J., Franks, N. R., & Levin, S. A. (2005). Effective leadership and decision-making in animal groups on the move. Nature, 433(7025), 513–516.
Delgado-Mata, C., Martinez, J. I., Bee, S., Ruiz-Rodarte, R., & Aylett, R. (2007). On the use of virtual animals with artificial fear in virtual environments. New Generation Computing, 25(2), 145–169. https://doi.org/10.1007/s00354-007-0009-5.
Dorigo, M., & Gambardella, L. M. (1997). Ant colony system: A cooperative learning approach to the traveling salesman problem. IEEE Transactions on Evolutionary Computation, 1(1), 53–66. https://doi.org/10.1109/4235.585892.
Dorigo, M., Maniezzo, V., & Colorni, A. (1996). Ant system: optimization by a colony of cooperating agents. IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics), 26(1), 29–41. https://doi.org/10.1109/3477.484436.
Dorigo, M., Maniezzo, V., & Colorni, A. (1991). The ant system: An autocatalytic optimizing process.
Dorigo, M. (1992). Optimization, learning and natural algorithms (PhD Thesis). Politecnico di Milano.
Fernandes, C., Mora, A. M., Merelo, J. J., Ramos, V., & Laredo, J. L. J. (2008a). KohonAnts: a self-organizing ant algorithm for clustering and pattern classification. arXiv preprint arXiv:0803.2695.
Fernandes, C., Mora, A. M., Merelo, J. J., Ramos, V., Laredo, J. L., & Rosa, A. (2008b). KANTS: Artifical ant system for classification. In International Conference on Ant Colony Optimization and Swarm Intelligence (pp. 339–346). Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-540-87527-7_35.
Fernandes, C. M. (2010). Pherographia: Drawing by ants. Leonardo, 43(2), 107–112. https://doi.org/10.1162/leon.2010.43.2.107.
Fernandes, C. M., Mora, A., Merelo, J. J., & Rosa, A. C. (2012). Pherogenic Drawings-Generating Colored 2-dimensional Abstract Representations of Sleep EEG with the KANTS Algorithm. In International Conference on Evolutionary Computation Theory and Applications (Vol. 2, pp. 72–80). SCITEPRESS.
Fernandes, C. M., Mora, A. M., Merelo, J. J., & Rosa, A. C. (2015). Photorealistic rendering with an ant algorithm. In Computational Intelligence (pp. 63–77). Springer, Cham. https://doi.org/10.1007/978-3-319-11271-8_5.
Gordon, D. (2010). Ant encounters: Interaction networks and colony behavior. Princeton University Press. https://doi.org/10.1515/9781400835447.
Greenfield, G., & Machado, P. (2015). Ant-and ant-colony-inspired alife visual art. Artificial Life, 21(3), 293–306. https://doi.org/10.1162/ARTL_a_00170.
Greenfield, G. (2005). Evolutionary methods for ant colony paintings. In Workshops on applications of evolutionary computation (pp. 478–487). Springer. https://doi.org/10.1007/978-3-540-32003-6_48.
Greenfield, G. (2006a). Ant paintings using a multiple pheromone model. In R. Sarhangi & J. Sharp (Eds.), BRIDGES 2006 Conference Proceedings (pp. 319–326).
Greenfield, G. (2006b). On evolving multi-pheromone ant paintings. In 2006 IEEE World Congress on Computational Intelligence. Vancouver: IEEE Press. WCCI06 Conference Proceedings (DVD-ROM ISBN: 0780394895) (pp. 7425–7431).
Greenfield, G. (2011). Abstract overlays using a transport network model. In Proceedings of Bridges 2011: Mathematics, Music, Art, Architecture, Culture (pp. 45–50). Tessellations Publishing.
Greenfield, G. (2012). Stigmmetry prints from patterns of circles. In Proceedings of Bridges 2012: Mathematics, Music, Art, Architecture, Culture (pp. 291–298). Tessellations Publishing.
Greenfield, G. (2013). Ant paintings based on the seed foraging behavior of P. barbatus. In 2013 BRIDGES Conference Proceedings.
Greenfield, G. (2013). On simulating seed foraging by red harvester ants. In 2013 IEEE Symposium on Artificial Life (ALife) (pp. 105–112). IEEE. https://doi.org/10.1109/ALIFE.2013.6602438.
Greenfield, G., & Sarhangi, R. (2014). Target curves for pick-up, carry and drop mobile automata. In Bridges 2014 Conference Proceedings (pp. 381–384).
Guéret, C., Monmarché, N., & Slimane, M. (2004, September). Ants can play music. In International Workshop on Ant Colony Optimization and Swarm Intelligence (pp. 310–317). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-28646-2_29.
Hartman, C., & Benes, B. (2006). Autonomous boids. Computer Animation and Virtual Worlds, 17(3–4), 199–206. https://doi.org/10.1002/cav.123.
Jacob, C. J., Hushlak, G., Boyd, J. E., Nuytten, P., Sayles, M., & Pilat, M. (2007). Swarmart: Interactive art from swarm intelligence. Leonardo, 40(3), 248–254. https://doi.org/10.1162/leon.2007.40.3.248.
Jones, J. (2010). Characteristics of pattern formation and evolution in approximations of Physarum transport networks. Artificial Life, 16(2), 127–153. https://doi.org/10.1162/artl.2010.16.2.16202.
Jones, D. (2008). AtomSwarm: A framework for swarm improvisation. In Workshops on Applications of Evolutionary Computation (pp. 423–432). Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-540-78761-7_45.
Kaplan, F. (2000). L’Émergence d’un Lexique dans une Population d’Agents Autonomes Ph.D. diss. University of Paris VI.
Kohonen, T. (1982). Self-organized formation of topologically correct feature maps. Biological Cybernetics, 43(1), 59–69. https://doi.org/10.1007/BF00337288.
Machado, P., Martins, T., Amaro, H., Abreu, P. H., Martins, T., Machado, P., & Martins, T. (2013). Evolving stencils for typefaces: Combining machine learning, user’s preferences and novelty. Complexity, 49, 64–78.
Machado, P., & Pereira, L. (2012). Photogrowth: Non-photorealistic renderings through ant paintings. In Proceedings of the 14th annual conference on Genetic and evolutionary computation (pp. 233–240). ACM. https://doi.org/10.1145/2330163.2330197.
Minsky, M. (1982). Music, mind, and meaning. In Music, mind, and brain (pp. 1-19). Springer. https://doi.org/10.1007/978-1-4684-8917-0_1.
Mora, A. M., Fernandes, C. M., Herrera, L. J., Castillo, P. A., Merelo, J. J., Rojas, F., & Rosa, A. C. (2010). Sleeping with ants, SVMs, multilayer perceptrons and SOMs. In 2010 10th International Conference on Intelligent Systems Design and Applications (pp. 126–131). IEEE. https://doi.org/10.1109/ISDA.2010.5687278.
Moura, L. (2002). Swarm paintings-non-human. ARCHITOPIA Book, Art, Architecture and Science 1–24.
Oudeyer, P. Y., Kaplan, F., & Hafner, V. V. (2007). Intrinsic motivation systems for autonomous mental development. IEEE Transactions on Evolutionary Computation, 11(2), 265–286. https://doi.org/10.1109/TEVC.2006.890271.
Oudeyer, P. Y., Kaplan, F., Hafner, V. V., & Whyte, A. (2005). The playground experiment: Task-independent development of a curious robot. In Proceedings of the AAAI Spring Symposium on Developmental Robotics (pp. 42–47). California: Stanford.
Poli, R. (2008). Analysis of the publications on the applications of particle swarm optimisation. Journal of Artificial Evolution and Applications, 2008, 1–10. https://doi.org/10.1155/2008/685175.
Ramos, V., & Almeida, F. (2004). Artificial ant colonies in digital image habitats-a mass behaviour effect study on pattern recognition. arXiv preprint cs/0412086.
Reynolds, C. W. (1987). Flocks, herds and schools: A distributed behavioral model. In SIGGRAPH ‘87 Conference Proceedings (Vol. 21, No. 4, pp. 25–34). Anaheim, CA: ACM Press. https://doi.org/10.1145/37401.37406.
Sayles, M., Wu, X., & Boyd, J. E. (2003, January). Caml: Camera markup language for network interaction. In Internet Imaging IV. International Society for Optics and Photonics. (Vol. 5018, pp. 248–256). https://doi.org/10.1117/12.476176.
Semet, Y., O’Reilly, U. M., & Durand, F. (2004). An interactive artificial ant approach to non-photorealistic rendering. In Genetic and Evolutionary Computation Conference (pp. 188–200). Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-540-24854-5_17.
Shiffman, D. (2004). Swarm, ACM SIGGRAPH 2004 Emerging Technologies Proceedings (p. 26). New York: ACM Press. https://doi.org/10.1145/1186155.1186182.
Todd, P. M., & Miranda, E. R. (2006). Putting some (artificial) life into models of musical creativity. In Musical Creativity (pp. 392–412). Psychology Press.
Tzafestas, E. S. (2000). Integrating drawing tools with behavioral modeling in digital painting. In Proceedings of the 2000 ACM Workshops on Multimedia (pp. 39–42). ACM. https://doi.org/10.1145/357744.357756.
Unemi, T., & Bisig, D. (2005). Flocking Orchestra-to play a type of generative music by interaction between human and flocking agents. In Proceedings of the eighth Generative Art Conference (pp. 19–21).
Urbano, P. (2006). Consensual paintings. In Workshops on applications of evolutionary computation (pp. 622–632). Springer. https://doi.org/10.1007/11732242_59.
Urbano, P. (2011). The T. albipennis sand painting artists. In European Conference on the Applications of Evolutionary Computation (pp. 414–423). Heidelberg: Springer, Berlin. https://doi.org/10.1007/978-3-642-20520-0_42.
Urbano, P. (2005a). Playing in the pheromone playground: Experiences in swarm painting. In F. Rothlauf et al. (Eds.), Applications of Evolutionary Computing, EvoWorkshops 2005 Proceedings (pp. 478–487). Heidelberg: Springer. https://doi.org/10.1007/978-3-540-32003-6_53.
Urbano, P. (2008). Swarm Exquisite-Corpses Games. In AAAI Spring Symposium: Creative Intelligent Systems (pp. 110–116).
von Mammen, S., & Jacob, C. (2007a, September). Genetic swarm grammar programming: Ecological breeding like a gardener. In 2007 IEEE Congress on Evolutionary Computation (pp. 851–858). IEEE. https://doi.org/10.1109/CEC.2007.4424559.
von Mammen, S., & Jacob, C. (2007b). Swarm grammars: Growing dynamic structures in 3D agent spaces. Digital Creativity, 18(1), 54–64. https://doi.org/10.1080/14626260701253622.
von Mammen, S., Wong, J., & Jacob, C. (2008, March). Virtual constructive swarm compositions and inspirations. In Workshops on Applications of Evolutionary Computation (pp. 491–496). Springer. https://doi.org/10.1007/978-3-540-78761-7_53.
Walter, W. G. (1951). A machine that learns. Scientific American, 185(2), 60–64.
Weisstein, E. W. (2005). Moore neighborhood. From MathWorld-A Wolfram Web Resource. https://mathworld.wolfram.com/MooreNeighborhood.html.
Wilson, E. O. (1971). The social insects. The Belknap Press of Harvard University Press.
Wilson, E. O., & Hölldobler, B. (1994). Journey to the ants: A story of scientific exploration. Belknap Press of Harvard University Press.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Copyright information
© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this chapter
Cite this chapter
Salimi, M. (2021). Model. In: Swarm Systems in Art and Architecture. Computational Synthesis and Creative Systems. Springer, Singapore. https://doi.org/10.1007/978-981-16-4357-6_3
Download citation
DOI: https://doi.org/10.1007/978-981-16-4357-6_3
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-16-4356-9
Online ISBN: 978-981-16-4357-6
eBook Packages: Computer ScienceComputer Science (R0)