Nothing Special   »   [go: up one dir, main page]

Skip to main content

Model

  • Chapter
  • First Online:
Swarm Systems in Art and Architecture

Part of the book series: Computational Synthesis and Creative Systems ((CSACS))

  • 424 Accesses

Abstract

Swarm intelligence is a complex phenomenon involving a population of agents (homogeneous or heterogeneous) and their local interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    ISO Flock Library is free and open to use and can be accessed here: http://swarms.cc/documentation/isoSynth/.

  2. 2.

    ISO Synth Library is free and open to use and can be accessed here: http://swarms.cc/documentation/isoSynth/.

References

  • al-Rifaie, M. M., Bishop, J. M., & Caines, S. (2012). Creativity and autonomy in swarm intelligence systems. Cognitive Computation, 4(3), 320–331. https://doi.org/10.1007/s12559-012-9130-y.

    Article  Google Scholar 

  • al-Rifaie, M. M., & Bishop, J. M. (2013a, April). Swarmic sketches and attention mechanism. In International Conference on Evolutionary and Biologically Inspired Music and Art (pp. 8596). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36955-1_8.

  • al-Rifaie, M. M., & Bishop, J. M. (2013b). Swarmic paintings and colour attention. In International Conference on Evolutionary and Biologically Inspired Music and Art (pp. 97–108). Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-642-36955-1_9.

  • al-Rifaie, A. M., & Al-Rifaie, M. M. (2015). Generative music with stochastic diffusion search. In International Conference on Evolutionary and Biologically Inspired Music and Art (pp. 1–14). Cham: Springer. https://doi.org/10.1007/978-3-319-16498-4_1.

  • Aupetit, S., Bordeau, V., Monmarché, N., Slimane, M., & Venturini, G. (2003, December). Interactive evolution of ant paintings. In The 2003 Congress on Evolutionary Computation, CEC’03. (Vol. 2, pp. 1376–1383). IEEE.

    Google Scholar 

  • Bishop, J. M. (1989). Stochastic searching networks. In 1989 First IEE International Conference on Artificial Neural Networks, (Conf. Publ. No. 313) (pp. 329–331). IET.

    Google Scholar 

  • Bisig, D., Schacher, J. C., Neukom, M. (2011). Flowspace-a hybrid ecosystem. In NIME (pp. 260–263).

    Google Scholar 

  • Blackwell, T. (2003). Swarm music: Improvised music with multi-swarms. Artificial Intelligence and the Simulation of Behaviour, University of Wales, 10, 142–158.

    Google Scholar 

  • Blackwell, T. (2007). Swarming and music. In Evolutionary Computer Music (pp. 194–217). Springer. https://doi.org/10.1007/978-1-84628-600-1_9.

  • Blackwell, T. (2008). Swarm granulation. In The Art of Artificial Evolution (pp. 103–122). Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-540-72877-1_5.

  • Blackwell, T. M., & Bentley, P. (2002, May). Improvised music with swarms. In Proceedings of the 2002 Congress on Evolutionary Computation. CEC’02 (Cat. No. 02TH8600) (Vol. 2, pp. 1462–1467). IEEE.

    Google Scholar 

  • Boyd, J. E., Hushlak, G., & Jacob, C. J. (2004). SwarmArt: interactive art from swarm intelligence. In Proceedings of the 12th Annual ACM International Conference on Multimedia (pp. 628–635). ACM. https://doi.org/10.1145/1027527.1027674.

  • Brownlee, J. (2012). Clever algorithms, nature-inspired programming recipes, open source book.

    Google Scholar 

  • Braitenberg, V. (1986). Vehicles: Experiments in synthetic psychology. MIT press.

    Google Scholar 

  • Burton, J. L., & Franks, N. R. (1985). The foraging ecology of the army ant Eciton rapax: an ergonomic enigma? Ecological Entomology, 10(2), 131–141.

    Google Scholar 

  • Chan, M. T., Gorbet, R., Beesley, P., & Kulič, D. (2015). Curiosity-based learning algorithm for distributed interactive sculptural systems. In 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 3435–3441). IEEE. https://doi.org/10.1109/IROS.2015.7353856.

  • Chialvo, D. R., & Millonas, M. M. (1995). How swarms build cognitive maps. In The Biology and Technology of Intelligent Autonomous Agents (pp. 439–450). Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-642-79629-6_20.

  • Chu, X., Wu, T., Weir, J. D., Shi, Y., Niu, B., & Li, L. (2018). Learning-interaction-diversification framework for swarm intelligence optimizers: A unified perspective. Neural Computing and Applications, 1-21. https://doi.org/10.1007/s00521-018-3657-0.

  • Couzin, I. D., Krause, J., Franks, N. R., & Levin, S. A. (2005). Effective leadership and decision-making in animal groups on the move. Nature, 433(7025), 513–516.

    Article  Google Scholar 

  • Delgado-Mata, C., Martinez, J. I., Bee, S., Ruiz-Rodarte, R., & Aylett, R. (2007). On the use of virtual animals with artificial fear in virtual environments. New Generation Computing, 25(2), 145–169. https://doi.org/10.1007/s00354-007-0009-5.

    Article  MATH  Google Scholar 

  • Dorigo, M., & Gambardella, L. M. (1997). Ant colony system: A cooperative learning approach to the traveling salesman problem. IEEE Transactions on Evolutionary Computation, 1(1), 53–66. https://doi.org/10.1109/4235.585892.

    Article  Google Scholar 

  • Dorigo, M., Maniezzo, V., & Colorni, A. (1996). Ant system: optimization by a colony of cooperating agents. IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics), 26(1), 29–41. https://doi.org/10.1109/3477.484436.

    Article  Google Scholar 

  • Dorigo, M., Maniezzo, V., & Colorni, A. (1991). The ant system: An autocatalytic optimizing process.

    Google Scholar 

  • Dorigo, M. (1992). Optimization, learning and natural algorithms (PhD Thesis). Politecnico di Milano.

    Google Scholar 

  • Fernandes, C., Mora, A. M., Merelo, J. J., Ramos, V., & Laredo, J. L. J. (2008a). KohonAnts: a self-organizing ant algorithm for clustering and pattern classification. arXiv preprint arXiv:0803.2695.

    Google Scholar 

  • Fernandes, C., Mora, A. M., Merelo, J. J., Ramos, V., Laredo, J. L., & Rosa, A. (2008b). KANTS: Artifical ant system for classification. In International Conference on Ant Colony Optimization and Swarm Intelligence (pp. 339–346). Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-540-87527-7_35.

  • Fernandes, C. M. (2010). Pherographia: Drawing by ants. Leonardo, 43(2), 107–112. https://doi.org/10.1162/leon.2010.43.2.107.

    Article  Google Scholar 

  • Fernandes, C. M., Mora, A., Merelo, J. J., & Rosa, A. C. (2012). Pherogenic Drawings-Generating Colored 2-dimensional Abstract Representations of Sleep EEG with the KANTS Algorithm. In International Conference on Evolutionary Computation Theory and Applications (Vol. 2, pp. 72–80). SCITEPRESS.

    Google Scholar 

  • Fernandes, C. M., Mora, A. M., Merelo, J. J., & Rosa, A. C. (2015). Photorealistic rendering with an ant algorithm. In Computational Intelligence (pp. 63–77). Springer, Cham. https://doi.org/10.1007/978-3-319-11271-8_5.

  • Gordon, D. (2010). Ant encounters: Interaction networks and colony behavior. Princeton University Press. https://doi.org/10.1515/9781400835447.

    Book  Google Scholar 

  • Greenfield, G., & Machado, P. (2015). Ant-and ant-colony-inspired alife visual art. Artificial Life, 21(3), 293–306. https://doi.org/10.1162/ARTL_a_00170.

  • Greenfield, G. (2005). Evolutionary methods for ant colony paintings. In Workshops on applications of evolutionary computation (pp. 478–487). Springer. https://doi.org/10.1007/978-3-540-32003-6_48.

  • Greenfield, G. (2006a). Ant paintings using a multiple pheromone model. In R. Sarhangi & J. Sharp (Eds.), BRIDGES 2006 Conference Proceedings (pp. 319–326).

    Google Scholar 

  • Greenfield, G. (2006b). On evolving multi-pheromone ant paintings. In 2006 IEEE World Congress
on Computational Intelligence. Vancouver: IEEE Press. WCCI06 Conference Proceedings (DVD-ROM ISBN: 0780394895) (pp. 7425–7431).

    Google Scholar 

  • Greenfield, G. (2011). Abstract overlays using a transport network model. In Proceedings of Bridges 2011: Mathematics, Music, Art, Architecture, Culture (pp. 45–50). Tessellations Publishing.

    Google Scholar 

  • Greenfield, G. (2012). Stigmmetry prints from patterns of circles. In Proceedings of Bridges 2012: Mathematics, Music, Art, Architecture, Culture (pp. 291–298). Tessellations Publishing.

    Google Scholar 

  • Greenfield, G. (2013). Ant paintings based on the seed foraging behavior of P. barbatus. In 2013 BRIDGES Conference Proceedings.

    Google Scholar 

  • Greenfield, G. (2013). On simulating seed foraging by red harvester ants. In 2013 IEEE Symposium on Artificial Life (ALife) (pp. 105–112). IEEE. https://doi.org/10.1109/ALIFE.2013.6602438.

  • Greenfield, G., & Sarhangi, R. (2014). Target curves for pick-up, carry and drop mobile automata. In Bridges 2014 Conference Proceedings (pp. 381–384).

    Google Scholar 

  • Guéret, C., Monmarché, N., & Slimane, M. (2004, September). Ants can play music. In International Workshop on Ant Colony Optimization and Swarm Intelligence (pp. 310–317). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-28646-2_29.

  • Hartman, C., & Benes, B. (2006). Autonomous boids. Computer Animation and Virtual Worlds, 17(3–4), 199–206. https://doi.org/10.1002/cav.123.

    Article  Google Scholar 

  • Jacob, C. J., Hushlak, G., Boyd, J. E., Nuytten, P., Sayles, M., & Pilat, M. (2007). Swarmart: Interactive art from swarm intelligence. Leonardo, 40(3), 248–254. https://doi.org/10.1162/leon.2007.40.3.248.

    Article  Google Scholar 

  • Jones, J. (2010). Characteristics of pattern formation and evolution in approximations of Physarum transport networks. Artificial Life, 16(2), 127–153. https://doi.org/10.1162/artl.2010.16.2.16202.

    Article  Google Scholar 

  • Jones, D. (2008). AtomSwarm: A framework for swarm improvisation. In Workshops on Applications of Evolutionary Computation (pp. 423–432). Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-540-78761-7_45.

  • Kaplan, F. (2000). L’Émergence d’un Lexique dans une Population d’Agents Autonomes Ph.D. diss. University of Paris VI.

    Google Scholar 

  • Kohonen, T. (1982). Self-organized formation of topologically correct feature maps. Biological Cybernetics, 43(1), 59–69. https://doi.org/10.1007/BF00337288.

  • Machado, P., Martins, T., Amaro, H., Abreu, P. H., Martins, T., Machado, P., & Martins, T. (2013). Evolving stencils for typefaces: Combining machine learning, user’s preferences and novelty. Complexity, 49, 64–78.

    Google Scholar 

  • Machado, P., & Pereira, L. (2012). Photogrowth: Non-photorealistic renderings through ant paintings. In Proceedings of the 14th annual conference on Genetic and evolutionary computation (pp. 233–240). ACM. https://doi.org/10.1145/2330163.2330197.

  • Minsky, M. (1982). Music, mind, and meaning. In Music, mind, and brain (pp. 1-19). Springer. https://doi.org/10.1007/978-1-4684-8917-0_1.

  • Mora, A. M., Fernandes, C. M., Herrera, L. J., Castillo, P. A., Merelo, J. J., Rojas, F., & Rosa, A. C. (2010). Sleeping with ants, SVMs, multilayer perceptrons and SOMs. In 2010 10th International Conference on Intelligent Systems Design and Applications (pp. 126–131). IEEE. https://doi.org/10.1109/ISDA.2010.5687278.

  • Moura, L. (2002). Swarm paintings-non-human. ARCHITOPIA Book, Art, Architecture and Science 1–24.

    Google Scholar 

  • Oudeyer, P. Y., Kaplan, F., & Hafner, V. V. (2007). Intrinsic motivation systems for autonomous mental development. IEEE Transactions on Evolutionary Computation, 11(2), 265–286. https://doi.org/10.1109/TEVC.2006.890271.

    Article  Google Scholar 

  • Oudeyer, P. Y., Kaplan, F., Hafner, V. V., & Whyte, A. (2005). The playground experiment: Task-independent development of a curious robot. In Proceedings of the AAAI Spring Symposium on Developmental Robotics (pp. 42–47). California: Stanford.

    Google Scholar 

  • Poli, R. (2008). Analysis of the publications on the applications of particle swarm optimisation. Journal of Artificial Evolution and Applications, 2008, 1–10. https://doi.org/10.1155/2008/685175.

    Article  Google Scholar 

  • Ramos, V., & Almeida, F. (2004). Artificial ant colonies in digital image habitats-a mass behaviour effect study on pattern recognition. arXiv preprint cs/0412086.

    Google Scholar 

  • Reynolds, C. W. (1987). Flocks, herds and schools: A distributed behavioral model. In SIGGRAPH ‘87 Conference Proceedings (Vol. 21, No. 4, pp. 25–34). Anaheim, CA: ACM Press. https://doi.org/10.1145/37401.37406.

  • Sayles, M., Wu, X., & Boyd, J. E. (2003, January). Caml: Camera markup language for network interaction. In Internet Imaging IV. International Society for Optics and Photonics. (Vol. 5018, pp. 248–256). https://doi.org/10.1117/12.476176.

  • Semet, Y., O’Reilly, U. M., & Durand, F. (2004). An interactive artificial ant approach to non-photorealistic rendering. In Genetic and Evolutionary Computation Conference (pp. 188–200). Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-540-24854-5_17.

  • Shiffman, D. (2004). Swarm, ACM SIGGRAPH 2004 Emerging Technologies Proceedings (p. 26). New York: ACM Press. https://doi.org/10.1145/1186155.1186182.

  • Todd, P. M., & Miranda, E. R. (2006). Putting some (artificial) life into models of musical creativity. In Musical Creativity (pp. 392–412). Psychology Press.

    Google Scholar 

  • Tzafestas, E. S. (2000). Integrating drawing tools with behavioral modeling in digital painting. In Proceedings of the 2000 ACM Workshops on Multimedia (pp. 39–42). ACM. https://doi.org/10.1145/357744.357756.

  • Unemi, T., & Bisig, D. (2005). Flocking Orchestra-to play a type of generative music by interaction between human and flocking agents. In Proceedings of the eighth Generative Art Conference (pp. 19–21).

    Google Scholar 

  • Urbano, P. (2006). Consensual paintings. In Workshops on applications of evolutionary computation (pp. 622–632). Springer. https://doi.org/10.1007/11732242_59.

  • Urbano, P. (2011). The T. albipennis sand painting artists. In European Conference on the Applications of Evolutionary Computation (pp. 414–423). Heidelberg: Springer, Berlin. https://doi.org/10.1007/978-3-642-20520-0_42.

  • Urbano, P. (2005a). Playing in the pheromone playground: Experiences in swarm painting. In F. Rothlauf et al. (Eds.), Applications of Evolutionary Computing, EvoWorkshops 2005 Proceedings (pp. 478–487). Heidelberg: Springer. https://doi.org/10.1007/978-3-540-32003-6_53.

  • Urbano, P. (2008). Swarm Exquisite-Corpses Games. In AAAI Spring Symposium: Creative Intelligent Systems (pp. 110–116).

    Google Scholar 

  • von Mammen, S., & Jacob, C. (2007a, September). Genetic swarm grammar programming: Ecological breeding like a gardener. In 2007 IEEE Congress on Evolutionary Computation (pp. 851–858). IEEE. https://doi.org/10.1109/CEC.2007.4424559.

  • von Mammen, S., & Jacob, C. (2007b). Swarm grammars: Growing dynamic structures in 3D agent spaces. Digital Creativity, 18(1), 54–64. https://doi.org/10.1080/14626260701253622.

    Article  Google Scholar 

  • von Mammen, S., Wong, J., & Jacob, C. (2008, March). Virtual constructive swarm compositions and inspirations. In Workshops on Applications of Evolutionary Computation (pp. 491–496). Springer. https://doi.org/10.1007/978-3-540-78761-7_53.

  • Walter, W. G. (1951). A machine that learns. Scientific American, 185(2), 60–64.

    Google Scholar 

  • Weisstein, E. W. (2005). Moore neighborhood. From MathWorld-A Wolfram Web Resource. https://mathworld.wolfram.com/MooreNeighborhood.html.

  • Wilson, E. O. (1971). The social insects. The Belknap Press of Harvard University Press.

    Google Scholar 

  • Wilson, E. O., & Hölldobler, B. (1994). Journey to the ants: A story of scientific exploration. Belknap Press of Harvard University Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahsoo Salimi .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Salimi, M. (2021). Model. In: Swarm Systems in Art and Architecture. Computational Synthesis and Creative Systems. Springer, Singapore. https://doi.org/10.1007/978-981-16-4357-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-4357-6_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-4356-9

  • Online ISBN: 978-981-16-4357-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics