Nothing Special   »   [go: up one dir, main page]

Skip to main content

Individual Behavior Recognition

  • Chapter
  • First Online:
Human Behavior Analysis: Sensing and Understanding

Abstract

In this chapter, we present some of our recent research advances on individual behavior sensing and recognition. Specifically, in Sections 5.1 and 5.2, we present two human mobility-related works (i.e., mobility prediction and disorientation detection) by leveraging GPS trajectories. Afterwards, we discuss how to recognize human behaviors by using smartphones in Sections 5.3 and 5.4 (i.e., human-computer operation recognition and human localization), followed by two device-free sensing-based behavior analysis practices in Sections 5.5 and 5.6 (i.e., human identity recognition and respiration detection).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. D. Nagowah, “Aiding social interaction via a mobile peer to peer network,” in Proc. 4th Int. Conf. Digital Soc., 2010, pp. 130–135.

    Google Scholar 

  2. T. Liu, B. Paramvir, and C. Imrich, “Mobility modeling, location tracking, and trajectory prediction in wireless ATM networks,” IEEE J. Sel. Areas Commun., vol. 16, no. 6, pp. 922–936, Aug. 1998.

    Google Scholar 

  3. J. Lawrence, T. R. Payne, and R. V. Kripalani, “Exploiting incidental interactions between mobile devices,” MIRW, vol. 56, pp. 56–59, 2006.

    Google Scholar 

  4. I. Buchem, “Serendipitous learning: recognizing and fostering the potential of microblogging,” Formare Open J. per la formazione rete, vol. 11, no. 74, pp. 7–16, 2011.

    Google Scholar 

  5. C. Brown, C. Efstratiou, I. Leontiadis, D. Quercia, and C. Mascolo, “Tracking serendipitous interactions: How individual cultures shape the office,” in Proc. 17th ACM Conf. Comput. Supported Cooperative Work Social Comput., 2014, pp. 1072–1081.

    Google Scholar 

  6. C. M. Huang, K. C. Lan, and C. Z. Tsai, “A survey of opportunistic networks,” in Proc. 22nd Int. Conf. Adv. Inf. Netw. Appl., 2008, pp. 1672–1677.

    Google Scholar 

  7. G. Yavas¸, D. Katsaros, O. Ulusoy, and Y. Manolopoulos, “A data mining approach for location prediction in mobile environments,” Data Knowl. Eng., vol. 54, no. 2, pp. 121–146, 2005.

    Article  Google Scholar 

  8. B. Thoms, “A dynamic social feedback system to support learning and social interaction in higher education,” IEEE Trans. Learning Technol., vol. 4, no. 4, pp. 340–352, Oct.–Dec. 2011.

    Article  Google Scholar 

  9. R. Beale, “Supporting social interaction with smart phones,” IEEE Pervasive Comput., vol. 4, no. 2, pp. 35–41, Jan.–Mar. 2005.

    Article  Google Scholar 

  10. W. S. Yang, S. Y. Hwang, and Y. W. Shih, “Facilitating information sharing and social interaction in mobile peer-to-peer environment,” in Proc. Pervasive Comput. Commun. Workshops, 2012, pp. 673–678.

    Google Scholar 

  11. P. Tamarit, C. T. Calafate, J. C. Cano, and P. Manzoni, “BlueFriend: Using Bluetooth technology for mobile social networking,” in Proc. 6th Annu. Int. Conf. Mobile Ubiquitous Syst.: Comput., Netw. Services, 2009, pp. 1–2.

    Google Scholar 

  12. J. A. Paradiso, J. Gips, M. Laibowitz, S. Sadi, D. Merrill, R. Aylward, P. Maes, and A. Pentland, “Identifying and facilitating social interaction with a wearable wireless sensor network,” Pers. Ubiquitous Comput., vol. 14, no. 2, pp. 137–152, 2010.

    Article  Google Scholar 

  13. H. Xiong, D. Zhang, D. Zhang, and V. Gauthier, “Predicting mobile phone user locations by exploiting collective behavioral patterns,” in Proc. 9th Int. Conf. Ubiquitous Intell. Comput., 2012, pp. 164–171.

    Google Scholar 

  14. T. M. T. Do and D. Gatica-Perez, “Contextual conditional models for smartphone-based human mobility prediction” in Proc. ACM Conf. Ubiquitous Comput., 2012, pp. 163–172.

    Google Scholar 

  15. E. Cho, S. A. Myers, and J. Leskovec, “Friendship and mobility: User movement in location-based social networks,” in Proc. 17th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, 2011, pp. 1082–1090.

    Google Scholar 

  16. A. Noulas, S. Scellato, N. Lathia, and C. Mascolo, “Mining user mobility features for next place prediction in location-based services,” in Proc. IEEE 12th Int. Conf. Data Mining, 2012, pp. 1038–1043.

    Google Scholar 

  17. P. Baumann, W. Kleiminger, and S. Santini, “The influence of temporal and spatial features on the performance of next-place prediction algorithms,” in Proc. ACM Int. Joint Conf. Pervasive Ubiquitous Comput., 2013, pp. 449–458.

    Google Scholar 

  18. J. McInerney, J. Zheng, A. Rogers, and N. R. Jennings, “Modelling heterogeneous location habits in human populations for location prediction under data sparsity,” in Proc. ACM Int. Joint Conf. Pervasive Ubiquitous Comput., 2013, pp. 469–478.

    Google Scholar 

  19. C. Song, Z. Qu, N. Blumm, and A.-L. Barabsi, “Limits of predictability in human mobility,” Science, vol. 327, no. 5968, pp. 1018–1021, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  20. M. Lin, W. J. Hsu, and Z. Q. Lee, “Predictability of individuals’ mobility with high-resolution positioning data,” in Proc. ACM Int. Joint Conf. Pervasive Ubiquitous Comput., 2012, pp. 381–390.

    Google Scholar 

  21. G. Chen, S. Hoteit, A. C. Viana, M. Fiore, and C. Sarraute, “Enriching sparse mobility information in Call Detail Records,” Computer Communications, vol. 122, pp. 44–58, 2018.

    Article  Google Scholar 

  22. L. Wang, Z. Yu, B. Guo, T. Ku, and F. Yi, “Moving destination prediction using sparse dataset: A mobility gradient descent approach,” ACM Transactions on Knowledge Discovery from Data (TKDD), vol. 11, no. 3, pp. 37, 2017.

    Google Scholar 

  23. X. Song, R. Shibasaki, N. J. Yuan, X. Xie, T. Li, and R. Adachi, “Deep Mob: learning deep knowledge of human emergency behavior and mobility from big and heterogeneous data,” ACM Transactions on Information Systems (TOIS), vol. 35, no. 4, pp. 41, 2017.

    Article  Google Scholar 

  24. R. Jiang, X. Song, Z. Fan, T. Xia, Q. Chen, Q. Chen, and R. Shibasaki, “Deep ROI-Based Modeling for Urban Human Mobility Prediction,” Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, vol. 2, no. 1, pp. 14, 2018.

    Article  Google Scholar 

  25. B. Resch, F. Calabrese, A. Biderman, and C. Ratti, “An approach towards real-time data exchange platform system architecture,” in Proc. 6th Annu. IEEE Int. Conf. Pervasive Comput. Commun., 2008, pp. 153–159.

    Google Scholar 

  26. E. Toch and I. Levi, “Locality and privacy in people-nearby applications,” in Proc. ACM Int. Joint Conf. Pervasive Ubiquitous Comput., 2013, pp. 539–548.

    Google Scholar 

  27. J. Quinlan, C4.5: Programs for Machine Learning. San Mateo, CA, USA: Morgan Kaufmann, 1993.

    Google Scholar 

  28. J. Quinlan, “Introduction of decision tree,” Mach. Learning, vol. 1, no. 1, pp. 81–106, 1986.

    Google Scholar 

  29. I. Witten, Data Mining—Practical Machine Learning Tools and Techniques, 2nd ed., San Francisco, CA, USA: Morgan Kaufmann, 2005.

    MATH  Google Scholar 

  30. N. Friedman, D. Geiger, and M. Goldszmidt, “Bayesian network classifiers,” Mach. Learning, vol. 29, pp. 131–163, 1997.

    Article  MATH  Google Scholar 

  31. M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. Witten, “The WEKA data mining software: An update,” ACM SIGKDD Explorations Newslett., vol. 11, no. 1, pp. 10–18, 2009.

    Article  Google Scholar 

  32. J. Quinlan, “Learning with continuous classes,” in Proc. Australian Joint Conf. Artif. Intell., 1992, pp. 343–348.

    Google Scholar 

  33. L. Nguyen, H. T. Cheng, P. Wu, S. Buthpitiya, and Y. Zhang, “PnLUM: System for prediction of next location for users with mobility,” in Proc. Nokia Mobile Data Challenge Workshop, vol. 2, 2012.

    Google Scholar 

  34. Z. Yu, H. Wang, B. Guo, T. Gu and T. Mei, "Supporting Serendipitous Social Interaction Using Human Mobility Prediction," in IEEE Transactions on Human-Machine Systems, vol. 45, 6, 811–818, Dec. 2015. DOI: https://doi.org/10.1109/THMS.2015.2451515

    Article  Google Scholar 

  35. UNFPA, State of World Population 2011. [Online] Available: http://foweb.unfpa.org/SWP2011/reports/EN-SWOP2011-FINAL.pdf.

  36. C. Kawas, R. Katzman, Epidemiology of dementia and Alzheimer’s disease, Alzheimer Dis. (1999) 95–116.

    Google Scholar 

  37. K. Du, D. Zhang, X. Zhou, M. Hariz, Handling conflicts of context-aware reminding system in sensorised home, Cluster Comput. 14 (1) (2011) 81–89.

    Article  Google Scholar 

  38. T. Giovannetti, D.J. Libon, L.J. Buxbaum, M.F. Schwartz, Naturalistic action impairments in dementia, Neuropsychologia 40 (8) (2002) 1220–1232.

    Article  Google Scholar 

  39. B. Reisberg, S. Ferris, M. Leon, T. Crook, The global deterioration scale for assessment of primary degenerative dementia, Am. J. Psychiatry 139 (1982) 1136–1139.

    Article  Google Scholar 

  40. R. McShane, K. Gedling, J. Keene, et al., Getting lost in dementia: a longitudinal study of a behavioural symptom, Int. Psychogeriatr. 10 (1998) 253–260.

    Article  Google Scholar 

  41. nedap-securitymanagement [Online] Available: http://www.nedap-securitymanagement.com/.

  42. L. Robinson, D. Hutchings, L. Corner, F. Beyer, et al., A systematic literature review of the effectiveness of non-pharmacological interventions to prevent wandering in dementia and evaluation of the ethical implications and acceptability of their use, Health Technol. Assess. 10 (26) (2006) 1–124.

    Article  Google Scholar 

  43. H. Ogawa, Y. Yonezawa, H. Maki, et al. A mobile phone-based safety support system for wandering elderly persons, in: Proc. of Engineering in Medicine and Biology Society, EMBS, 2004, pp. 3316–3317.

    Google Scholar 

  44. D. Patterson, L. Liao, K. Gajos, et al., Opportunity knocks: a system to provide cognitive assistance with transportation services, in: Proc. of UbiComp, 2004, in: LNCS, vol. 3205, 2004, pp. 433–450.

    Chapter  Google Scholar 

  45. Y. Chang, Anomaly detection for travelling individuals with cognitive impairments, Newsl. ACM SIGACCESS Access. Comput. 97 (2010) 25–32.

    Article  Google Scholar 

  46. M.C. González, C.A. Hidalgo, A.L. Barabási, Understanding individual human mobility patterns, Nature 453 (2008) 779–782.

    Article  Google Scholar 

  47. F.T. Liu, K.M. Ting, Z.-H. Zhou, Isolation forest, in: 8th IEEE International Conference on Data Mining, ICDM, pp. 413–422.

    Google Scholar 

  48. K. Shimizu, K. Kawamura, K. Yamamoto, Location system for dementia wandering, in: Proc. of EMBS, 2000, pp. 1556–1559.

    Google Scholar 

  49. S. Matsuoka, H. Ogawa, H. Maki, et al. A new safety support system for wandering elderly persons, in: Proc. of EMBS, 2011, pp. 5232–5235.

    Google Scholar 

  50. M. Mulvenna, S. Sävenstedt, F. Meiland, et al. Designing & evaluating a cognitive prosthetic for people with mild dementia, in: Proc. of ECCE, 2010, pp. 11–18.

    Google Scholar 

  51. C. Palomino, P. Heras-Quiros, et al. Outdoors monitoring of elderly people assisted by compass, GPS and mobile social network, in: Proc. of IWANN, 2009, pp. 808–811.

    Google Scholar 

  52. J. Brush, M. Calkins, Cognitive impairment, wayfinding, and the long-term care environment, Pers. Gerontol. 13 (2) (2008) 65–73.

    Article  Google Scholar 

  53. L. Liao, D. Fox, H. Kautz, Learning and inferring transportation routines, in: Proc. of AAAI, 2004, pp. 348–353.

    Google Scholar 

  54. Y. Chang, T. Wang, Mobile location-based social networking in supported employment for people with cognitive impairments, Cybern. Syst. 41 (3) (2010) 245–261.

    Article  Google Scholar 

  55. J.-G. Lee, J. Han, X. Li, Trajectory outlier detection: a partition-and-detect framework, in: Proc. of ICDE, 2008, pp. 140–149.

    Google Scholar 

  56. Y. Ge, H. Xiong, Z.-H. Zhou, et al. Top-eye: top-k evolving trajectory outlier detection, in: Proc. of CIKM, 2010, pp. 1733–1736.

    Google Scholar 

  57. Y. Bu, L. Chen, A.W.-C. Fu, D. Liu, Efficient anomaly monitoring over moving object trajectory streams, in: Proc. of KDD, 2009, pp. 159–168.

    Google Scholar 

  58. X. Li, Z. Li, J. Han, J.-G. Lee, Temporal outlier detection in vehicle traffic data, in: Proc. of ICDE, 2009, pp. 1319–1322.

    Google Scholar 

  59. X. Li, J. Han, S. Kim, H. Gonzalez, ROAM: rule- and motif-based anomaly detection in massive moving object data sets, in: Proc. of SDM, 2007, pp. 273–284.

    Google Scholar 

  60. R.R. Sillito, R.B. Fisher, Semi-supervised learning for anomalous trajectory detection, in: Proc. of BMVC, 2008, pp. 1035–1044.

    Google Scholar 

  61. Z. Liao, Y. Yu, B. Chen, Anomaly detection in GPS data based on visual analytics, in: Proc. of VAST, 2010, pp. 51–58.

    Google Scholar 

  62. D. Zhang, N. Li, Z. Zhou, C. Chen, et al. iBAT: detecting anomalous taxi trajectories from GPS traces, in: Proc. of UbiComp, 2011, pp. 99–108.

    Google Scholar 

  63. C. Chen, D. Zhang, P.S. Castro, et al. Real-time detection of anomalous taxi trajectories from GPS traces, in: Proc. of MobiQuitous, 2011, pp. 1–12.

    Google Scholar 

  64. J. Yuan, Y. Zheng, X. Xie, G. Sun, T -drive: enhancing driving directions with taxi drivers’ intelligence, IEEE Trans. Knowl. Data Eng. 25 (1) (2013)220–232.

    Article  Google Scholar 

  65. C. Parent, S. Spaccapietra, C. Renso, et al., Semantic trajectories modeling and analysis, ACM Comput. Surv. 45 (4) (2013) 42–64.

    Article  Google Scholar 

  66. D. Martino-Saltzman, B.B. Blasch, R.D. Morris, et al., Travel behavior of nursing home residents perceived as wanderers and nonwanderers, Gerontologist 31 (5) (1991) 666–672.

    Article  Google Scholar 

  67. Y. Zheng, Q. Li, Y. Chen, et al. Understanding mobility based on GPS data, in: Proc. of UbiComp, 2008, pp. 312–321.

    Google Scholar 

  68. Y. Zheng, X. Xie, W. Ma, GeoLife: a collaborative social networking service among user, location and trajectory, IEEE Data Eng. Bull. 33 (2) (2010) 32–40.

    Google Scholar 

  69. Q. Lin, D. Zhang, K. Connelly, H. Ni, Z. Yu, X. Zhou, Disorientation detection by mining GPS trajectories for cognitively-impaired elders, Pervasive and Mobile Computing, 19, 2015, 71–85

    Article  Google Scholar 

  70. K. Marshall, “Working with computers,” Perspectives Labour Income, vol. 22, no. 5, pp. 9–15, 2001.

    Google Scholar 

  71. E. A. Boyle, T. M. Connolly, T. Hainey, and J. M. Boyle, “Engagement in digital entertainment games: A systematic review,” Comput. Human Behav., vol. 28, no. 3, pp. 771–780, 2012.

    Article  Google Scholar 

  72. B. Schilit, N. Adams, and R. Want, “Context-aware computing applications,” in Proc. 1st Workshop Mobile Comput. Syst. Appl. (WMCSA), Santa Cruz, CA, USA, 1994, pp. 85–90.

    Google Scholar 

  73. M. Griffiths, “Does Internet and computer ‘addiction’ exist? Some case study evidence,” CyberPsychol. Behav., vol. 3, no. 2, pp. 211–218, 2000.

    Article  Google Scholar 

  74. L. Chen, J. Hoey, C. D. Nugent, D. J. Cook, and Z. Yu, “Sensor-based activity recognition,” IEEE Trans. Syst., Man, Cybern. C, Appl. Rev., vol. 42, no. 6, pp. 790–808, Nov. 2012.

    Article  Google Scholar 

  75. B. Guo, Z. Yu, L. Chen, X. Zhou, and X. Ma, “Mobigroup: Enabling lifecycle support to social activity organization and suggestion with mobile crowd sensing,” IEEE Trans. Human–Mach. Syst., vol. 46, no. 3, pp. 390–402, Jun. 2016.

    Article  Google Scholar 

  76. R. Piyare, “Internet of Things: Ubiquitous home control and monitoring system using android based smart phone,” Int. J. Internet Things, vol. 2, no. 1, pp. 5–11, 2013.

    Google Scholar 

  77. A. Mehrotra, R. Hendley, and M. Musolesi, “Prefminer: Mining user’s preferences for intelligent mobile notification management,” in Proc. UBICOMP, Heidelberg, Germany, 2016, pp. 1223–1234.

    Google Scholar 

  78. Z. Yu, H. Xu, Z. Yang, and B. Guo, “Personalized travel package with multi-point-of-interest recommendation based on crowdsourced user footprints,” IEEE Trans. Human–Mach Syst., vol. 46, no. 1, pp. 151–158, Feb. 2016.

    Article  Google Scholar 

  79. Z. Yu, F. Yi, Q. Lv, and B. Guo, “Identifying on-site users for social events: Mobility, content, and social relationship,” IEEE Trans. Mobile Comput., to be published, doi: https://doi.org/10.1109/TMC.2018.2794981.

    Article  Google Scholar 

  80. P. Hevesi, S. Wille, G. Pirkl, N. Wehn, and P. Lukowicz, “Monitoring household activities and user location with a cheap, unobtrusive thermal sensor array,” in Proc. UBICOMP, 2014, pp. 141–145.

    Google Scholar 

  81. E. Thomaz, I. Essa, and G. D. Abowd, “A practical approach for recognizing eating moments with wrist-mounted inertial sensing,” in Proc. UBICOMP, Osaka, Japan, 2015, pp. 1029–1040.

    Google Scholar 

  82. J. Korpela, R. Miyaji, T. Maekawa, K. Nozaki, and H. Tamagawa, “Evaluating tooth brushing performance with smartphone sound data,” in Proc. UBICOMP, Osaka, Japan, 2015, pp. 109–120.

    Google Scholar 

  83. T. Hao, G. Xing, and G. Zhou, “RunBuddy: A smartphone system for running rhythm monitoring,” in Proc. UBICOMP, Osaka, Japan, 2015, pp. 133–144.

    Google Scholar 

  84. P. Marquardt, A. Verma, H. Carter, and P. Traynor, “(sp) iPhone: Decoding vibrations from nearby keyboards using mobile phone accelerometers,” in Proc. 18th ACM Conf. Comput. Commun. Security, Chicago, IL, USA, 2011, pp. 551–562.

    Google Scholar 

  85. D. Asonov and R. Agrawal, “Keyboard acoustic emanations,” in Proc. IEEE Symp. Security Privacy, vol. 2004. Berkeley, CA, USA, 2004, pp. 3–11.

    Google Scholar 

  86. J. Wang, K. Zhao, X. Zhang, and C. Peng, “Ubiquitous keyboard for small mobile devices: Harnessing multipath fading for fine-grained keystroke localization,” in Proc. MobiSys, Bretton Woods, NH, USA, 2014, pp. 14–27.

    Google Scholar 

  87. H. Du et al., “Sensing keyboard input for computer activity recognition with a smartphone,” in Proc. ACM Int. Joint Conf. Pervasive Ubiquitous Comput. ACM Int. Symp. Wearable Comput. UbiComp/ISWC, Maui, HI, USA, Sep. 2017, pp. 25–28.

    Google Scholar 

  88. H. Jimison, M. Pavel, J. McKanna, and J. Pavel, “Unobtrusive monitoring of computer interactions to detect cognitive status in elders,” IEEE Trans. Inf. Technol. Biomed., vol. 8, no. 3, pp. 248–252, Sep. 2004.

    Google Scholar 

  89. J. Srivastava, R. Cooley, M. Deshpande, and P.-N. Tan, “Web usage mining: Discovery and applications of usage patterns from Web data,” ACM SIGKDD Explor. Newslett., vol. 1, no. 2, pp. 12–23, 2000.

    Article  Google Scholar 

  90. H. Du et al., “Group mobility classification and structure recognition using mobile devices,” in Proc. PerCom, Sydney, NSW, Australia, 2016, pp. 1–9.

    Google Scholar 

  91. B. Guo et al., “Worker-contributed data utility measurement for visual crowdsensing systems,” IEEE Trans. Mobile Comput., vol. 16, no. 8, pp. 2379–2391, Aug. 2017.

    Google Scholar 

  92. H. Chen, B. Guo, Z. Yu, L. Chen, and X. Ma, “A generic framework for constraint-driven data selection in mobile crowd photographing,” IEEE Internet Things J., vol. 4, no. 1, pp. 284–296, Feb. 2017.

    Google Scholar 

  93. X. Zhang, W. Li, X. Chen, and S. Lu, “MoodExplorer: Towards Compound Emotion Detection via Smartphone Sensing,” Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, vol. 1, no. 4, pp. 176, 2018.

    Google Scholar 

  94. P. Siirtola and J. Röning, “Recognizing human activities user independently on smartphones based on accelerometer data,” Int. J. Interact. Multimedia Artif. Intell., vol. 1, no. 5, pp. 38–45, 2012.

    Google Scholar 

  95. A. M. Khan, A. Tufail, A. M. Khattak, and T. H. Laine, “Activity recognition on smartphones via sensor-fusion and KDA-based SVMS,” Int. J. Distrib. Sensor Netw., vol. 10, no. 5, pp. 1–14, 2014.

    Article  Google Scholar 

  96. M. Shoaib, S. Bosch, Ö. D. Incel, H. Scholten, and P. J. M. Havinga, “Fusion of smartphone motion sensors for physical activity recognition,” Sensors, vol. 14, no. 6, pp. 10146–10176, 2014.

    Article  Google Scholar 

  97. R. Mohamed and M. Youssef, “Heartsense: Ubiquitous accurate multi-modal fusion-based heart rate estimation using smartphones,” Proceedings of the ACM on Interactive, Mobile Wearable and Ubiquitous Technologies, vol. 1, no. 3, pp. 97, 2017.

    Article  Google Scholar 

  98. H. Lu, W. Pan, N. D. Lane, T. Choudhury, and A. T. Campbell, “Soundsense: Scalable sound sensing for people-centric applications on mobile phones,” in Proc. MobiSys, 2009, pp. 165–178.

    Google Scholar 

  99. H. Du et al., “Recognition of group mobility level and group structure with mobile devices,” IEEE Trans. Mobile Comput., to be published, doi: https://doi.org/10.1109/TMC.2017.2694839.

    Article  Google Scholar 

  100. X. Sun, Z. Lu, W. Hu, and G. Cao, “Symdetector: Detecting sound-related respiratory symptoms using smartphones,” in Proc. UbiComp, Osaka, Japan, 2015, pp. 97–108.

    Google Scholar 

  101. T. Zhu, Q. Ma, S. Zhang, and Y. Liu, “Context-free attacks using keyboard acoustic emanations,” in Proc. ACM SIGSAC Conf. Comput. Commun. Security, Scottsdale, AZ, USA, 2014, pp. 453–464.

    Google Scholar 

  102. J. Liu et al., “Snooping keystrokes with mm-level audio ranging on a single phone,” in Proc. MobiCom, Paris, France, 2015, pp. 142–154.

    Google Scholar 

  103. B. Chen, V. Yenamandra, and K. Srinivasan, “Tracking keystrokes using wireless signals,” in Proc. MobiSys, Florence, Italy, 2015, pp. 31–44.

    Google Scholar 

  104. K. Ali, A. X. Liu, W. Wang, and M. Shahzad, “Recognizing keystrokes using WiFi devices,” IEEE Journal on Selected Areas in Communications, vol. 35, no. 5, pp. 1175–1190, 2017.

    Article  Google Scholar 

  105. L. Zhuang, F. Zhou, and J. D. Tygar, “Keyboard acoustic emanations revisited,” ACM Trans. Inf. Syst. Security (TISSEC), vol. 13, no. 1, 2009, Art. no. 3.

    Article  Google Scholar 

  106. Y. Berger, A. Wool, and A. Yeredor, “Dictionary attacks using keyboard acoustic emanations,” in Proc. 13th ACM Conf. Comput. Commun. Security, Alexandria, VA, USA, 2006, pp. 245–254.

    Google Scholar 

  107. W. K. Pratt, “Generalized Wiener filtering computation techniques,” IEEE Trans. Comput., vol. C-21, no. 7, pp. 636–641, Jul. 1972.

    Google Scholar 

  108. R.-Z. Zhang and H.-J. Cui, “Speech endpoint detection algorithm analyses based on short-term energy,” Audio Eng., vol. 7, no. 7, p. 015, 2005.

    Google Scholar 

  109. M. Damashek, “Gauging similarity with n-Grams: Language-independent categorization of text,” Science, vol. 267, no. 5199, pp. 843–848, 1995.

    Article  Google Scholar 

  110. J. Kaur and J. R. Saini, “Emotion detection and sentiment analysis in text corpus: A differential study with informal and formal writing styles,” Int. J. Comput. Appl., vol. 101, no. 9, pp. 1–9, 2014.

    Google Scholar 

  111. P. H. Dietz, B. Eidelson, J. Westhues, and S. Bathiche, “A practical pressure sensitive computer keyboard,” in Proc. 22nd Annu. ACM Symp. User Interface Softw. Technol., Victoria, BC, Canada, 2009, pp. 55–58.

    Google Scholar 

  112. W. van den Hoogen, E. Braad, and W. A. IJsselsteijn, “Pressure at play: Measuring player approach and avoidance behaviour through the keyboard,” in Proc. DIGRA Int. Conf., vol. 2014, no. 8. Salt Lake City, UT, USA, 2014, p. 12.

    Google Scholar 

  113. Z. Yu, H. Du, D. Xiao, Z. Wang, Q. Han and B. Guo, "Recognition of Human Computer Operations Based on Keystroke Sensing by Smartphone Microphone," in IEEE Internet of Things Journal, vol. 5, 2, pp. 1156–1168, April 2018.

    Google Scholar 

  114. World Health Organization. Drowning fact sheet number 347. 2010.

    Google Scholar 

  115. Eng, How-Lung, et al. "DEWS: a live visual surveillance system for early drowning detection at pool." Circuits and Systems for Video Technology, IEEE Transactions on 18.2 (2008): 196–210.

    Google Scholar 

  116. Kharrat, Mohamed, et al. "Near drowning pattern recognition using neural network and wearable pressure and inertial sensors attached at swimmer’s chest level." Mechatronics and Machine Vision in Practice (M2VIP), 2012 19th International Conference. IEEE, 2012.

    Google Scholar 

  117. iSwimband Wearable Drowning Detection Device. https://www.iswimband.com/

  118. Martin E, Vinyals O, Friedland G, et al. Precise indoor localization using smart phones. Proceedings of the international conference on Multimedia. ACM, 2010: 787–790.

    Google Scholar 

  119. Xiong J, Jamieson K. ArrayTrack: A Fine-Grained Indoor Location System. NSDI. 2013: 71–84.

    Google Scholar 

  120. Hsu H H, Peng W J, Shih T K, et al. Smartphone Indoor Localization with Accelerometer and Gyroscope. Network-Based Information Systems (NBiS), 2014 17th International Conference on. IEEE, 2014: 465–469.

    Google Scholar 

  121. Qian J, Ma J, Ying R, et al. An improved indoor localization method using smartphone inertial sensors. Indoor Positioning and Indoor Navigation (IPIN), 2013 International Conference on. IEEE, 2013: 1–7.

    Google Scholar 

  122. Haverinen J, Kemppainen A. Global indoor self-localization based on the ambient magnetic field. Robotics and Autonomous Systems, 2009, 57(10): 1028–1035.

    Article  Google Scholar 

  123. Hassan, M., Daiber, F., Wiehr, F., Kosmalla, F., & Krüger, A. Footstriker: An EMS-based foot strike assistant for running. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 1(1), 2, 2017.

    Google Scholar 

  124. Chun, K. S., Bhattacharya, S., and Thomaz, E. Detecting Eating Episodes by Tracking Jawbone Movements with a Non-Contact Wearable Sensor. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 2(1), 4, 2018.

    Article  Google Scholar 

  125. Seuter, M., Pfeiffer, M., Bauer, G., Zentgraf, K., & Kray, C. Running with Technology: Evaluating the Impact of Interacting with Wearable Devices on Running Movement. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 1(3), 101, 2017.

    Google Scholar 

  126. Auvinet B, Gloria E, Renault G, et al. Runner’s stride analysis: comparison of kinematic and kinetic analyses under field conditions. Science & Sports, 2002, 17(2): 92–94.

    Article  Google Scholar 

  127. Fitzpatrick K, Anderson R. Validation of accelerometers and gyroscopes to provide real-time kinematic data for golf analysis. The Engineering of Sport 6. Springer New York, 2006: 155–160.

    Google Scholar 

  128. Spelmezan D, Borchers J. Real-time snowboard training system. CHI'08 Extended Abstracts on Human Factors in Computing Systems. ACM, 2008: 3327–3332.

    Google Scholar 

  129. Echterhoff, J. M., Haladjian, J., & Brügge, B. Gait and jump classification in modern equestrian sports. In Proceedings of the 2018 ACM International Symposium on Wearable Computers (pp. 88–91). ACM, 2018.

    Google Scholar 

  130. Marshall J. Smartphone sensing for distributed swim stroke coaching and research. Proceedings of the 2013 ACM conference on Pervasive and ubiquitous computing adjunct publication. ACM, 2013: 1413–1416.

    Google Scholar 

  131. Bächlin M, Förster K, Tröster G. SwimMaster: a wearable assistant for swimmer. Proceedings of the 11th international conference on Ubiquitous computing. ACM, 2009: 215–224.

    Google Scholar 

  132. Siirtola P, Laurinen P, Röning J, et al. Efficient accelerometer-based swimming exercise tracking. Computational Intelligence and Data Mining (CIDM), 2011 IEEE Symposium on. IEEE, 2011: 156–161.

    Google Scholar 

  133. Deng Z A, Hu Y, Yu J, et al. Extended Kalman Filter for Real Time Indoor Localization by Fusing WiFi and Smartphone Inertial Sensors. Micromachines, 2015, 6(4): 523–543.

    Article  Google Scholar 

  134. Kon Y, Omae Y, Sakai K, et al. Toward Classification of Swimming Style by using Underwater Wireless Accelerometer Data. Ubicomp/ISWC’15 Adjunct, Osaka, Japan.

    Google Scholar 

  135. Woohyeok C, Jeungmin O, Taiwoo P, et al. MobyDick: An Interactive Multi-swimmer Exergame. Proceedings of the 12th ACM Conference on Embedded Network Sensor Systems, SenSys '14, Memphis, Tennessee, USA, November 3–6, 2014.

    Google Scholar 

  136. Anhua L, Jianzhong Z, Kai L, et al. An efficient outdoor localization method for smartphones. 23rd International Conference on Computer Communication and Networks, ICCCN 2014, Shanghai, China, August 4–7, 2014.

    Google Scholar 

  137. Kartik S, Minhui Z, Xiang Fa Guo, et al. Using Mobile Phone Barometer for Low-Power Transportation Context Detection. Proceedings of the 12th ACM Conference on Embedded Network Sensor Systems, SenSys '14, Memphis, Tennessee, USA, November 3–6, 2014.

    Google Scholar 

  138. Muralidharan K, Khan A J, Misra A, et al. Barometric phone sensors: more hype than hope! Proceedings of the 15th Workshop on Mobile Computing Systems and Applications. ACM, 2014: 12.

    Google Scholar 

  139. D. Xiao, Z. Yu, F. Yi, L. Wang, C. Tan & Guo, B. (2016). SmartSwim: An Infrastructure-Free Swimmer Localization System Based on Smartphone Sensors. In: Chang C., Chiari L., Cao Y., Jin H., Mokhtari M., Aloulou H. (eds) Inclusive Smart Cities and Digital Health. ICOST 2016. Lecture Notes in Computer Science, vol 9677. Springer, pp 222–234.

    Google Scholar 

  140. N. Duta. A survey of biometric technology based on hand shape. Pattern Recognition 42 (11), 2009, pp. 2797–2806.

    Article  Google Scholar 

  141. K. Karu, and A.K. Jain. Fingerprint classification. Pattern Recognition 29 (3), 1996, pp. 389–404.

    Article  Google Scholar 

  142. D. Malaspina, E. Coleman, R.R. Goetz, J Harkavy-Friedman, C. Corcoran, X. Amador, S. Yale, and J.M. Gorman Odor identification, eye tracking and deficit syndrome schizophrenia Biological Psychiatry 51 (10), 2002, pp. 809–815.

    Article  Google Scholar 

  143. H.A. Park, and K.R. Park. Iris recognition based on score level fusion by using SVM. Pattern Recognition Letters 28 (15), 2007, pp. 2019–2028.

    Article  Google Scholar 

  144. K Kurita. Human Identification from Walking Signal Based on Measurement of Current Generated by Electrostatic Induction. In Proceedings of the 2011 International Conference on Biometrics and Kansei Engineering (ICBAKE '11), 2011, pp. 232–237.

    Google Scholar 

  145. JJ Little, and JE Boyd. Recognizing People by Their Gait: The Shape of Motion. Journal of Computer Vision Research, 1998, 1(2): 1–32.

    Google Scholar 

  146. C. Nickel, C. Busch, S. Rangarajan, and M. Möbius. Using Hidden Markov Models for accelerometer-based biometric gait recognition. Signal Processing and its Applications (CSPA), 2011 IEEE 7th International Colloquium on, 2011, pp. 58–63.

    Google Scholar 

  147. D. Mulyono, and H.S. Jinn. A study of finger vein biometric for personal identification. International Symposium on Biometrics and Security Technologies, 2008, pp. 1–8.

    Google Scholar 

  148. Google ATAP. 2015. Welcome to Project Soli. Video. (29 May 2015.) Retrieved April 11, 2016 from https://www.youtube.com/watch?v=0QNiZfSsPc0.

  149. G. Zanca, F. Zorzi, A. Zanella, and M. Zorzi. Experimental comparison of RSSI-based localization algorithms for indoor wireless sensor networks. Proceedings of the workshop on Real-world wireless sensor networks (REALWSN '08), 2008, pp. 1–5.

    Google Scholar 

  150. Y. F. Huang, T. Y. Yao and H. J. Yang. Performance of Hand Gesture Recognition Based on Received Signal Strength with Weighting Signaling in Wireless Communications. Network-Based Information Systems (NBiS), 2015 18th International Conference on, 2015, pp. 596–600.

    Google Scholar 

  151. W. Xi, J. Zhao, X. Y. Li, K. Zhao, S. Tang, X. Liu and Z. Jiang. Electronic frog eye: Counting crowd using Wi-Fi. IEEE INFOCOM. 2014, pp. 361–369.

    Google Scholar 

  152. Z. Yang, Z. Zhou, Y. Liu. From RSSI to CSI: Indoor localization via channel response. ACM Computing Surveys (CSUR), 2013, 46(2):25.

    Article  MATH  Google Scholar 

  153. K. Ali, A. X. Liu, W. Wang, and M. Shahzad. Keystroke Recognition Using Wi-Fi Signals. In Proceedings of the 21st Annual International Conference on Mobile Computing and Networking (MobiCom ‘15), 2015, pp. 90–102.

    Google Scholar 

  154. C. Han, K. Wu, Y. Wang, and L. M Ni. Wifall: Device-free fall detection by wireless networks. In Proceedings of IEEE International Conference on Computer Communications (INFOCOM ‘14), 2014, pp. 271–279.

    Google Scholar 

  155. R. Nandakumar, B. Kellogg, and S. Gollakota. Wi-Fi gesture recognition on existing devices. Eprint Arxiv, 2014.

    Google Scholar 

  156. G Wang, Y Zou, Z Zhou, and K Wu. We Can Hear You with Wi-Fi! In Proceedings of the 20th Annual International Conference on Mobile Computing and Networking (MobiCom ‘14), 2014, pp. 593–604.

    Google Scholar 

  157. Y. Wang, J. Liu, Y. Chen, M. Gruteser, J. Yang, and H. Liu. E-eyes: device-free location-oriented activity identification using fine-grained Wi-Fi signatures. In Proceedings of the 20th annual international conference on Mobile computing and networking, 2014, pp. 617–628.

    Google Scholar 

  158. M. Shahzad, and S. Zhang. Augmenting User Identification with WiFi Based Gesture Recognition. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 2018, 2(3), 134.

    Article  Google Scholar 

  159. S. Palipana, D. Rojas, P. Agrawal, and D. Pesch. FallDeFi: Ubiquitous Fall Detection using Commodity Wi-Fi Devices, Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 2018, 1(4), 155.

    Article  Google Scholar 

  160. R. Chellappa, C. Wilson, and S. Sirohev. Human and machine recognition of faces: a survey. Proceedings of IEEE vol. 83 (5), 1995, pp. 705–740.

    Article  Google Scholar 

  161. D. Halperin, W. Hu, A. Sheth, and D. Wetherall. Tool release: Gathering 802.11n traces with channel state information. ACM SIGCOMM CCR 41(1):53.

    Article  Google Scholar 

  162. S. Sen, J. Lee, K.-H. Kim, and P. Congdon. Avoiding multipath to revive inbuilding Wi-Fi localization. In Proceeding of ACM MobiSys, 2013, pp. 249–262

    Google Scholar 

  163. X. Li, S. Li, D. Zhang, J. Xiong, Y. Wang, and H. Mei. Dynamic-MUSIC: Accurate Device-free Indoor Localization. In Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing (UbiComp’16). ACM, 2016, pp. 196–207.

    Google Scholar 

  164. X. Li, D. Zhang, Q. Lv, J. Xiong, S. Li, Y. Zhang, and H. Mei. IndoTrack: Device-Free Indoor Human Tracking with Commodity Wi-Fi, Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 2017, 1(3), 72.

    Google Scholar 

  165. D. Wu, D. Zhang, C. Xu, H. Wang, and X. Li. 2017. Device-Free WiFi Human Sensing: From Pattern-Based to Model-Based Approaches. IEEE Communications Magazine 55, 10 (OCTOBER 2017), 91–97.

    Article  Google Scholar 

  166. D. Zhang, H. Wang, and D. Wu. Toward Centimeter-Scale Human Activity Sensing with Wi-Fi Signals. Computer 50, 1 (Jan 2017), 48–57.

    Google Scholar 

  167. H. Wang, D. Zhang, J. Ma, Y. Wang, Y. Wang, D. Wu, T. Gu, and B. Xie. Human Respiration Detection with Commodity WiFi Devices: Do User Location and Body Orientation Matter?. In Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing, 2016, pp. 25–36.

    Google Scholar 

  168. D. Wu, D. Zhang, C. Xu, Y. Wang, and H. Wang. WiDir: Walking Direction Estimation Using Wireless Signals. In Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing (UbiComp’16), 2016, pp. 351–362.

    Google Scholar 

  169. F. Zhang, D. Zhang, J. Xiong, H. Wang, K. Niu, B. Jin, and Y. Wang. From Fresnel Diffraction Model to Fine-grained Human Respiration Sensing with Commodity Wi-Fi Devices. IMWUT 2, 1 (2018), 53:1–53:23

    Google Scholar 

  170. T. Xin, B. Guo, Z. Wang, M. Li, Z. Yu and X. Zhou, "FreeSense: Indoor Human Identification with Wi-Fi Signals," 2016 IEEE Global Communications Conference (GLOBECOM), Washington, DC, 2016, pp. 1–7. DOI: https://doi.org/10.1109/GLOCOM.2016.7841847

    Book  Google Scholar 

  171. Adib Fadel, Hongzi Mao, Zachary Kabelac, Dina Katabi, and Robert C Miller. 2015. Smart homes that monitor breathing and heart rate. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems. ACM, 837–846.

    Google Scholar 

  172. Healthcare. 2012. F. M. Market for embedded health monitoring-gadgets to hit 170M devices by 2017. http://www.fiercemobilehealthcare.com/story/market-embedded-health-monitoring-gadgets-hit-170m\-devices-2017/2012-08-03. (2012).

  173. Michelle A Cretikos, Rinaldo Bellomo, Ken Hillman, Jack Chen, Simon Finfer and Arthas Flabouris. Respiratory rate: the neglected vital sign. Medical Journal of Australia 188, 11 (2008): 657.

    Article  Google Scholar 

  174. J. Brian North and Sheila Jennett. Abnormal breathing patterns associated with acute brain damage. 1974. Archives of neurology 31, 5 (1974), 338–344.

    Article  Google Scholar 

  175. Yuan, George, Nicole A. Drost, and R. Andrew McIvor. 2013. Respiratory rate and breathing pattern. McMaster University Medical Journal 10, 1, 23–25.

    Google Scholar 

  176. Cooke, Jana R., and Sonia Ancoli-Israel. Normal and abnormal sleep in the elderly. 2011. Handbook of clinical neurology/edited by PJ Vinken and GW Bruyn 98 (2011), 653.

    Google Scholar 

  177. Norman, Daniel, and José S. Loredo. Obstructive sleep apnea in older adults. Clinics in geriatric medicine 24.1 (2008), 151–165.

    Article  Google Scholar 

  178. Lee-Chiong, L. Teofilo Monitoring respiration during sleep. Clinics in chest medicine 24, 2 (2003), 297–306.

    Article  Google Scholar 

  179. R. Madeline, MPH. Vann. 2015. The 15 Most Common Health Concerns for Seniors. URL: http://goo.gl/EQn2fn, 2015

  180. J. N. Wilkinson, and V. U. Thanawala. 2009. Thoracic impedance monitoring of respiratory rate during sedation – is it safe?. Anaesthesia, 64 (2009), 455–456.

    Article  Google Scholar 

  181. Jaffe, B. Michael. 2008. Infrared measurement of carbon dioxide in the human breath: “breathe-through” devices from Tyndall to the present day. Anesthesia & Analgesia 107, 3 (2008), 890–904.

    Article  Google Scholar 

  182. Rita Paradiso. 2003. Wearable health care system for vital signs monitoring. In Information Technology Applications in Biomedicine, 2003. 4th International IEEE EMBS Special Topic Conference on. IEEE, 283–286.

    Google Scholar 

  183. Shoko Nukaya, Toshihiro Shino, Yosuke Kurihara, Kajiro Watanabe, Hiroshi Tanaka. Noninvasive bed sensing of human biosignals via piezoceramic devices sandwiched between the floor and bed. IEEE Sensors journal 12, 3 (2012), 431–438.

    Article  Google Scholar 

  184. Hulya Gokalp and Malcolm Clarke. Monitoring activities of daily living of the elderly and the potential for its use in telecare and telehealth: a review. TELEMEDICINE and e-HEALTH 19, 12 (2013), 910–923.

    Article  Google Scholar 

  185. Jochen Penne, Christian Schaller, Joachim Hornegger, and Torsten Kuwert. Robust real-time 3D respiratory motion detection using time-of-flight cameras. International Journal of Computer Assisted Radiology and Surgery 3, 5 (2008), 427–431.

    Article  Google Scholar 

  186. T Kondo, T Uhlig, P Pemberton, and PD Sly. Laser monitoring of chest wall displacement. European Respiratory Journal 10, 8 (1997), 1865–1869.

    Article  Google Scholar 

  187. M Nowogrodzki, DD Mawhinney, and HF Milgazo. Non-invasive microwave instruments for the measurement of respiration and heart rates. NAECON 1984 1984 (1984), 958–960.

    Google Scholar 

  188. Svetha Venkatesh, Christopher R Anderson, Natalia V Rivera, and R Michael Buehrer. Implementation and analysis of respiration-rate estimation using impulse-based UWB. In Military Communications Conference, 2005. MILCOM 2005. IEEE. IEEE, 3314–3320.

    Google Scholar 

  189. Fadel Adib, Hongzi Mao, Zachary Kabelac, Dina Katabi, and Robert C Miller. 2015. Smart homes that monitor breathing and heart rate. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems. ACM, 837–846.

    Google Scholar 

  190. Ruth Ravichandran, Elliot Saba, Ke-Yu Chen, Mayank Goel, Sidhant Gupta, and Shwetak N Patel. 2015. WiBreathe: Estimating respiration rate using wireless signals in natural settings in the home. In Pervasive Computing and Communications (PerCom), 2015 IEEE International Conference on. IEEE, 131–139.

    Google Scholar 

  191. Fadel Adib, Zachary Kabelac, Dina Katabi, Robert C. Miller. 2013. 3D Tracking via Body Radio Reflections. In Proceedings of the 11th USENIX Conference on Networked Systems Design and Implementation. USENIX Association, 317–329.

    Google Scholar 

  192. Hao Wang, Daqing Zhang, Junyi Ma, Yasha Wang, Yuxiang Wang, Dan WU, Tao Gu, Bing Xie. 2016. Human respiration detection with commodity WiFi devices: do user location and body orientation matter?. In Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing. ACM, 25–36.

    Google Scholar 

  193. Jian Liu, Yan Wang, Yingying Chen, Jie Yang, Xu Chen, and Jerry Cheng. 2015. Tracking Vital Signs During Sleep Leveraging Off-the-shelf WiFi. In Proceedings of the 16th ACM International Symposium on Mobile Ad Hoc Networking and Computing. ACM, 267–276.

    Google Scholar 

  194. Xuefeng Liu, Jiannong Cao, Shaojie Tang, and Jiaqi Wen. 2014. Wi-Sleep: Contactless sleep monitoring via WiFi signals. In Real-Time Systems Symposium (RTSS), 2014 IEEE. IEEE, 346–355.

    Google Scholar 

  195. Xuefeng Liu, Jiannong Cao, Shaojie Tang, Jiaqi Wen, and Peng Guo. 2016a. Contactless Respiration Monitoring via WiFi Signals. Mobile Computing, IEEE Transactions on (2016).

    Google Scholar 

  196. Chenshu Wu, Zheng Yang, Zimu Zhou, Xuefeng Liu, Yunhao Liu, and Jiannong Cao. Non-Invasive Detection of Moving and Stationary Human With WiFi. Selected Areas in Communications, IEEE Journal on 33, 11 (2015), 2329–2342.

    Google Scholar 

  197. Heba Abdelnasser, Khaled A Harras, and Moustafa Youssef. 2015. Ubibreathe: A ubiquitous non-invasive WiFi-based breathing estimator. arXiv preprint arXiv:1505.02388 (2015).

    Google Scholar 

  198. Ossi Kaltiokallio, Huseyin Yigitler, Riku Jantti, and Neal Patwari. 2014. Non-invasive respiration rate monitoring using a single COTS TX-RX pair. In Information Processing in Sensor Networks, IPSN-14 Proceedings of the 13th International Symposium on. IEEE, 59–69.

    Google Scholar 

  199. Neal Patwari, Lara Brewer, Quinn Tate, Ossi Kaltiokallio, and Maurizio Bocca. 2014a. Breathfinding: A wireless network that monitors and locates breathing in a home. Selected Topics in Signal Processing, IEEE Journal of 8, 1 (2014), 30–42.

    Google Scholar 

  200. Neal Patwari, James Wilson, Sundaram Ananthanarayanan, Sneha Kumar Kasera, and Dwayne R Westenskow. 2014b. Monitoring breathing via signal strength in wireless networks. Mobile Computing, IEEE Transactions on 13, 8 (2014), 1774–1786.

    Google Scholar 

  201. Philippe Arlotto, Michel Grimaldi, Roomila Naeck and Jean-Marc Ginoux. An ultrasonic contactless sensor for breathing monitoring. Sensors 14.8 (2014), 15371–86.

    Article  Google Scholar 

  202. Rajalakshmi Nandakumar, Shyamnath Gollakota, Nathaniel Watson M.D.. 2015. Contactless Sleep Apnea Detection on Smartphones. In Proceedings of the 13th Annual International Conference on Mobile Systems, Applications, and Services. ACM, 45–57.

    Google Scholar 

  203. Carina Barbosa Pereira, Xinchi Yu, Michael Czaplik, Rolf Rossaint, Vladimir Blazek, and Steffen Leonhardt. Remote monitoring of breathing dynamics using infrared thermography. Biomedical optics express, 6, 11 (2015), 4378–4394.

    Article  Google Scholar 

  204. Hao Tian, Guoliang Xing, and Gang Zhou. 2013. iSleep: unobtrusive sleep quality monitoring using smartphones. In Proceedings of the 11th ACM Conference on Embedded Networked Sensor Systems. ACM, 1–14.

    Google Scholar 

  205. Chunyi Peng, Guobin Shen, Yongguang Zhang, Yanlin Li, Kun Tan (2007). BeepBeep: a high accuracy acoustic ranging system using COTS mobile devices. In Proceedings of the 5th international conference on Embedded networked sensor systems. ACM, 1–14

    Google Scholar 

  206. Tian Hao, Guoliang Xing, Gang Zhou. 2015. RunBuddy: A Smartphone system for running rhythm monitoring. In Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing. ACM, 133–144

    Google Scholar 

  207. A. G. Stove. (1992). Linear FMCW radar techniques. Radar & Signal Processing Iee Proceedings F, 139, 5(1992):343–350.

    Google Scholar 

  208. Oppenheim A V, Willsky A S, Nawab S H. 1996. Signals & systems (2nd ed.) Prentice-Hall, Inc.

    Google Scholar 

  209. S. Suleymanov. (2016). Design and Implementation of an FMCW Radar Signal Processing Module for Automotive Applications (Master’s thesis, University of Twente).

    Google Scholar 

  210. T. Wang, D. Zhang, Y. Zheng, T. Gu, X. Zhou, B. Dorizzi. C-FMCW Based Contactless Respiration Detection Using Acoustic Signal. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies table of contents archive, 1(4), December 2017, Article No. 170

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yu, Z., Wang, Z. (2020). Individual Behavior Recognition. In: Human Behavior Analysis: Sensing and Understanding. Springer, Singapore. https://doi.org/10.1007/978-981-15-2109-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-2109-6_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-2108-9

  • Online ISBN: 978-981-15-2109-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics