Abstract
Relation extraction (RE) is an important task and has wide applications. Distant supervision is widely used in RE methods which can automatically construct labeled data to reduce the manual annotation effort. This method usually results in many instances with incorrect labels. In addition, most of existing relation extraction methods merely rely on the textual content of sentences to extract relation. In fact, many knowledge graphs are off-the-shelf and they can provide useful information of entities and relations, which has the potential to alleviate the noisy data problem and improve the performance of relation extraction. In this paper, we propose a knowledge-aware attention model to incorporate the knowledge graph information into relation extraction. In our approach, we first learn the representations of entities and relations from knowledge graph using graph embedding methods. Then we propose a knowledge-aware word attention model to select the informative words in sentences for relation extraction. In addition, we also propose a knowledge-aware sentence attention model to select useful sentences for RE to alleviate the problem of noisy data brought by distant supervision. We conduct experiments on a widely used dataset and the results show that our approach can effectively improve the performance of neural relation extraction.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abujabal, A., Yahya, M., Riedewald, M., Weikum, G.: Automated template generation for question answering over knowledge graphs. In: WWW, pp. 1191–1200 (2017)
Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: DBpedia: a nucleus for a web of open data. In: Aberer, K., et al. (eds.) ASWC/ISWC -2007. LNCS, vol. 4825, pp. 722–735. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76298-0_52
Bollacker, K., Evans, C., Paritosh, P., Sturge, T., Taylor, J.: Freebase: a collaboratively created graph database for structuring human knowledge. In: SIGMOD, pp. 1247–1250 (2008)
Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data. In: NIPS, pp. 2787–2795 (2013)
GuoDong, Z., Jian, S., Jie, Z., Min, Z.: Exploring various knowledge in relation extraction. In: ACL, pp. 427–434 (2005)
Hoffmann, R., Zhang, C., Ling, X., Zettlemoyer, L., Weld, D.S.: Knowledge-based weak supervision for information extraction of overlapping relations. In: ACL, pp. 541–550 (2011)
Ji, G., Liu, K., He, S., Zhao, J., et al.: Distant supervision for relation extraction with sentence-level attention and entity descriptions. In: AAAI, pp. 3060–3066 (2017)
Kambhatla, N.: Combining lexical, syntactic, and semantic features with maximum entropy models for extracting relations. In: ACL, p. 22 (2004)
Lin, Y., Liu, Z., Sun, M., Liu, Y., Zhu, X.: Learning entity and relation embeddings for knowledge graph completion. In: AAAI 2015, pp. 2181–2187 (2015)
Lin, Y., Shen, S., Liu, Z., Luan, H., Sun, M.: Neural relation extraction with selective attention over instances. In: ACL, pp. 2124–2133 (2016)
Mintz, M., Bills, S., Snow, R., Jurafsky, D.: Distant supervision for relation extraction without labeled data. In: ACL, pp. 1003–1011 (2009)
Riedel, S., Yao, L., McCallum, A.: Modeling relations and their mentions without labeled text. In: Balcázar, J.L., Bonchi, F., Gionis, A., Sebag, M. (eds.) ECML PKDD 2010. LNCS (LNAI), vol. 6323, pp. 148–163. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15939-8_10
Riedel, S., Yao, L., McCallum, A., Marlin, B.M.: Relation extraction with matrix factorization and universal schemas. In: NAACL, pp. 74–84 (2013)
Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)
Surdeanu, M., Tibshirani, J., Nallapati, R., Manning, C.D.: Multi-instance multi-label learning for relation extraction. In: EMNLP, pp. 455–465 (2012)
Xiao, H., Huang, M., Hao, Y., Zhu, X.: TransA: an adaptive approach for knowledge graph embedding. arXiv preprint arXiv:1509.05490 (2015)
Zeiler, M.D.: ADADELTA: an adaptive learning rate method. arXiv preprint arXiv:1212.5701 (2012)
Zeng, D., Liu, K., Chen, Y., Zhao, J.: Distant supervision for relation extraction via piecewise convolutional neural networks. In: EMNLP, pp. 1753–1762 (2015)
Zeng, D., Liu, K., Lai, S., Zhou, G., Zhao, J.: Relation classification via convolutional deep neural network. In: COLING, pp. 2335–2344 (2014)
Zhou, P., et al.: Attention-based bidirectional long short-term memory networks for relation classification. In: ACL, pp. 207–212 (2016)
Acknowledgments
This work is supported by the National Social Science Fund of China (15BTQ056).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Wang, P., Liu, H., Wu, F., Song, J., Xu, H., Wang, W. (2019). REKA: Relation Extraction with Knowledge-Aware Attention. In: Zhu, X., Qin, B., Zhu, X., Liu, M., Qian, L. (eds) Knowledge Graph and Semantic Computing: Knowledge Computing and Language Understanding. CCKS 2019. Communications in Computer and Information Science, vol 1134. Springer, Singapore. https://doi.org/10.1007/978-981-15-1956-7_6
Download citation
DOI: https://doi.org/10.1007/978-981-15-1956-7_6
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-15-1955-0
Online ISBN: 978-981-15-1956-7
eBook Packages: Computer ScienceComputer Science (R0)