Nothing Special   »   [go: up one dir, main page]

Skip to main content

From Marker to Markerless in Augmented Reality

  • Conference paper
  • First Online:
Embedded Systems and Artificial Intelligence

Abstract

Our article discusses existing methods in marker-based and markerless augmented reality and their evolution over time. Markers are the most optimal solution to solve the problem of calculating the pose for augmented reality and do not require powerful devices. Its simplicity, robustness and efficiency have a great advantage; the objects to detect are provided to the application and require to be always visible by the sensor. On the other hand, markerless augmented reality detects objects or characteristic points of a scene without any prior knowledge of the environment. This mechanism is more difficult to implement because it implements algorithms that are expensive in terms of computation time. The appearance and improvement of new devices have made it possible to exploit this technology and to detach from the presence of a marker in a scene and emerge to markerless methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Azuma, R.T.: A survey of augmented reality 48 (1997)

    Google Scholar 

  2. Zhou, F., Duh, H.B., Billinghurst, M.: Trends in augmented reality tracking, interaction and display: a review of ten years of ISMAR. In: 2008 7th IEEE/ACM International Symposium on Mixed and Augmented Reality, pp. 193–202. Presented at the 2008 7th IEEE/ACM International Symposium on Mixed and Augmented Reality (2008). https://doi.org/10.1109/ismar.2008.4637362

  3. Kutter, O., Aichert, A., Bichlmeier, C., Traub, J., Michael, S., Ockert, B., Euler, E., Navab, N.: Real-time volume rendering for high quality visualization in augmented reality 10 (2008)

    Google Scholar 

  4. Cabero Almenara, J., Barroso Osuna, J.: The educational possibilities of augmented reality. J. New Approaches Educ. Res. 6(1), 44–50 (2016). https://doi.org/10.7821/naer.2016.1.140

    Article  Google Scholar 

  5. Marchand, E., Uchiyama, H., Spindler, F.: Pose estimation for augmented reality: a hands-on survey. IEEE Trans. Visual Comput. Graph. 22(12), 2633–2651 (2016). https://doi.org/10.1109/TVCG.2015.2513408

    Article  Google Scholar 

  6. Lowe, D.G.: Object recognition from local scale-invariant features. In: Proceedings of the Seventh IEEE International Conference on Computer Vision, vol. 2, pp. 1150–1157. Presented at the Proceedings of the Seventh IEEE International Conference on Computer Vision (1999). https://doi.org/10.1109/iccv.1999.790410

  7. Bay, H., Tuytelaars, T., Van Gool, L.: SURF: speeded up robust features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) Computer Vision – ECCV 2006, vol. 3951, pp. 404–417. Springer, Berlin, Heidelberg (2006). https://doi.org/10.1007/11744023_32

  8. Calonder, M., Lepetit, V., Strecha, C., Fua, P.: BRIEF: binary robust independent elementary features. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) Computer Vision – ECCV 2010, vol. 6314, pp. 778–792. Springer, Berlin, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15561-1_56

  9. Annich, A., El Abderrahmani, A., Satori, K.: Fast and easy 3D reconstruction with the help of geometric constraints and genetic algorithms. 3D Res. 8(3) (2017). https://doi.org/10.1007/s13319-017-0139-6

  10. Li, Y., Wang, Y.-T., Liu, Y.: Fiducial marker based on projective invariant for augmented reality. J. Comput. Sci. Technol. 22(6), 890–897 (2007). https://doi.org/10.1007/s11390-007-9100-0

    Article  Google Scholar 

  11. Bergamasco, F., Albarelli, A., Torsello, A.: Pi-Tag: a fast image-space marker design based on projective invariants. Mach. Vis. Appl. 24(6), 1295–1310 (2013). https://doi.org/10.1007/s00138-012-0469-6

    Article  Google Scholar 

  12. Hirzer, M.: Marker detection for augmented reality applications 28 (n.d.)

    Google Scholar 

  13. Matsuoka, H., Onozawa, A., Hosoya, E.: Environment mapping for objects in the real world: a trial using ARToolKit. In: The First IEEE International Workshop Augmented Reality Toolkit, p. 2. Presented at the First IEEE International Workshop Augmented Reality Toolkit (2002). https://doi.org/10.1109/art.2002.1107006

  14. Fiala, M.: ARTag, a fiducial marker system using digital techniques. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), vol. 2, pp. 590–596. Presented at the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05). IEEE, San Diego, CA, USA (2005). https://doi.org/10.1109/cvpr.2005.74

  15. Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image Vis. Comput. 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004

    Article  Google Scholar 

  16. Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using mixed integer linear programming. Pattern Recogn. 51, 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023

    Article  Google Scholar 

  17. Ferrari, V., Tuytelaars, T., Van Gool, L.: Markerless augmented reality with a real-time affine region tracker. In: Proceedings IEEE and ACM International Symposium on Augmented Reality, pp. 87–96. Presented at the IEEE and ACM International Symposium on Augmented Reality. IEEE Computer Society, New York, NY, USA (2001). https://doi.org/10.1109/isar.2001.970518

  18. Simon, G., Fitzgibbon, A.W., Zisserman, A.: Markerless tracking using planar structures in the scene. In: Proceedings IEEE and ACM International Symposium on Augmented Reality (ISAR 2000), pp. 120–128. Presented at the IEEE and ACM International Symposium on Augmented Reality (ISAR 2000). IEEE, Munich, Germany (2000). https://doi.org/10.1109/isar.2000.880935

  19. Skrypnyk, I., Lowe, D.G.: Scene modelling, recognition and tracking with invariant image features. In: Third IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 110–119. Presented at the Third IEEE and ACM International Symposium on Mixed and Augmented Reality. IEEE, Arlington, VA, USA (2004). https://doi.org/10.1109/ismar.2004.53

  20. Lee, T., Hollerer, T.: Viewpoint stabilization for live collaborative video augmentations. In: Proceedings of the 5th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 241–242. IEEE Computer Society, Washington, DC, USA (2006). https://doi.org/10.1109/ismar.2006.297824

  21. Rekimoto, J.: Matrix: a realtime object identification and registration method for augmented reality (1998)

    Google Scholar 

  22. Kato, H., Billinghurst, M.: Marker tracking and HMD calibration for a video-based augmented reality conferencing system. In: Proceedings 2nd IEEE and ACM International Workshop on Augmented Reality (IWAR’99), pp. 85–94. Presented at the Proceedings 2nd IEEE and ACM International Workshop on Augmented Reality (IWAR’99) (1999). https://doi.org/10.1109/iwar.1999.803809

  23. Henrysson, A., Ollila, M.: UMAR: ubiquitous mobile augmented reality. In: Proceedings of the 3rd International Conference on Mobile and Ubiquitous Multimedia - MUM’04, pp. 41–45. Presented at the 3rd International Conference. ACM Press, College Park, Maryland (2004). https://doi.org/10.1145/1052380.1052387

  24. Wojciechowski, R., Walczak, K., White, M., Cellary, W.: Building virtual and augmented reality museum exhibitions. In: Proceedings of the Ninth International Conference on 3D Web Technology, pp. 135–144. ACM, New York, NY, USA (2004). https://doi.org/10.1145/985040.985060

  25. Rohs, M., Laboratories, D.T., Berlin, T.: Marker-based embodied interaction for handheld augmented reality games. J. Virtual Reality Broadcast. (2007)

    Google Scholar 

  26. Neumann, U., Park, J.: Extendible object-centric tracking for augmented reality. In: Proceedings. IEEE 1998 Virtual Reality Annual International Symposium (Cat. No.98CB36180), pp. 148–155. Presented at the Proceedings. IEEE 1998 Virtual Reality Annual International Symposium (Cat. No.98CB36180), IEEE Computer Society, Atlanta, GA, USA (1998). https://doi.org/10.1109/vrais.1998.658482

  27. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981). https://doi.org/10.1145/358669.358692

    Article  MathSciNet  Google Scholar 

  28. Harris, C., Stephens, M.: A combined corner and edge detector. In: Proceedings of the Alvey Vision Conference 1988, pp. 23.1–23.6. Presented at the Alvey Vision Conference 1988. Alvey Vision Club, Manchester (1988). https://doi.org/10.5244/c.2.23

  29. Comport, A.I., Marchand, E., Chaumette, F.: A real-time tracker for markerless augmented reality. In: The Second IEEE and ACM International Symposium on Mixed and Augmented Reality, 2003. Proceedings, pp. 36–45. Presented at the Second IEEE and ACM International Symposium on Mixed and Augmented Reality. IEEE Computer Society, Tokyo, Japan (2003). https://doi.org/10.1109/ismar.2003.1240686

  30. Simon, G., Berger, M.-O.: Reconstructing while registering: a novel approach for markerless augmented reality. In: Proceedings. International Symposium on Mixed and Augmented Reality, pp. 285–293. Presented at the IEEE and ACM International Symposium on Mixed and Augmented Reality. IEEE Computer Society, Darmstadt, Germany (2002). https://doi.org/10.1109/ismar.2002.1115118

  31. Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: MonoSLAM: real-time single camera SLAM. IEEE Trans. Pattern Anal. Mach. Intell. 29(6), 1052–1067 (2007). https://doi.org/10.1109/TPAMI.2007.1049

    Article  Google Scholar 

  32. Ondruska, P., Kohli, P., Izadi, S.: MobileFusion: real-time volumetric surface reconstruction and dense tracking on mobile phones. IEEE Trans. Visual Comput. Graph. 21(11), 1251–1258 (2015). https://doi.org/10.1109/TVCG.2015.2459902

    Article  Google Scholar 

  33. Newcombe, R.A., Izadi, S., Hilliges, O., Molyneaux, D., Kim, D., Davison, A.J., Kohli, P., Shotton, J., Hodges, S., Fitzgibbon, A.: Kinectfusion: real-time dense surface mapping and tracking 66 (2011)

    Google Scholar 

  34. Izadi, S., Davison, A., Fitzgibbon, A., Kim, D., Hilliges, O., Molyneaux, D., Newcombe, R., Kohli, P., Shotton, J., Hodges, S., Freeman, D.: KinectFusion: real-time 3D reconstruction and interaction using a moving depth camera. In: Proceedings of the 24th Annual ACM Symposium on User Interface Software and Technology - UIST’11, p. 559. Presented at the 24th Annual ACM Symposium. ACM Press, Santa Barbara, California, USA (2011). https://doi.org/10.1145/2047196.2047270

  35. Bostanci, E., Kanwal, N., Clark, A.F.: Augmented reality applications for cultural heritage using Kinect. Human-Centric Comput. Inf. Sci. 5(1) (2015). https://doi.org/10.1186/s13673-015-0040-3

  36. Chen, C.-W., Chen, W.-Z., Peng, J.-W., Cheng, B.-X., Pan, T.-Y., Kuo, H.-C.: A real-time markerless augmented reality framework based on SLAM technique, pp. 127–132. IEEE, Exeter (2017). https://doi.org/10.1109/ispan-fcst-iscc.2017.87

  37. Basori, A.H., Afif, F.N., Almazyad, A.S., AbuJabal, H.A.S., Rehman, A., Alkawaz, M.H.: Fast markerless tracking for augmented reality in planar environment. 3D Res. 6(4) (2015). https://doi.org/10.1007/s13319-015-0072-5

  38. Feiner, S., MacIntyre, B., Höllerer, T., Webster, A.: A touring machine: prototyping 3D mobile augmented reality systems for exploring the urban environment. Pers. Technol. 1(4), 208–217 (1997). https://doi.org/10.1007/BF01682023

    Article  Google Scholar 

  39. Azuma, R.T., Hoff, B.R., Iii, H.E.N., Sarfaty, R., Daily, M.J., Bishop, G., Chi, V., Welch, G., Neumann, U., You, S., Cannon, J.: Making augmented reality work outdoors requires hybrid tracking 6 (1998)

    Google Scholar 

  40. Ventura, J., Hollerer, T.: Wide-area scene mapping for mobile visual tracking. In: 2012 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), pp. 3–12. Presented at the 2012 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), IEEE, Atlanta, GA, USA (2012). 10.1109/ISMAR.2012.6402531

    Google Scholar 

  41. McCartney, M.: Margaret McCartney: game on for Pokémon Go. BMJ i4306 (2016). https://doi.org/10.1136/bmj.i4306

  42. Ando, T., Matsumoto, T., Takahashi, H., Shimizu, E.: Head mounted display for mixed reality using holographic optical elements 6 (1999)

    Google Scholar 

  43. Evans, G., Miller, J., Iglesias Pena, M., MacAllister, A., Winer, E.: Evaluating the Microsoft HoloLens through an augmented reality assembly application. In: Sanders-Reed, J. (Jack) N., Arthur, J. (Trey) J. (eds.) Presented at the SPIE Defense + Security, p. 101970V, Anaheim, California, United States (2017). https://doi.org/10.1117/12.2262626

  44. Cai, S., Wang, X., Chiang, F.-K.: A case study of augmented reality simulation system application in a chemistry course. Comput. Hum. Behav. 37, 31–40 (2014). https://doi.org/10.1016/j.chb.2014.04.018

    Article  Google Scholar 

  45. Lee, S., Lee, J., Lee, A., Park, N., Song, S., Seo, A., Lee, H., Kim, J.I., Eom, K.: Augmented reality intravenous injection simulator based 3D medical imaging for veterinary medicine. Vet. J. 196(2), 197–202 (2013). https://doi.org/10.1016/j.tvjl.2012.09.015

  46. Bur, J.W., McNeill, M.D.J., Charles, D.K., Morrow, P.J., Crosbie, J.H., McDonough, S.M.: Augmented reality games for upper-limb stroke rehabilitation. In: 2010 Second International Conference on Games and Virtual Worlds for Serious Applications, pp. 75–78. Presented at the 2010 2nd International Conference on Games and Virtual Worlds for Serious Applications (VS-GAMES 2010). IEEE, Braga, Portugal (2010). https://doi.org/10.1109/vs-games.2010.21

  47. Tillon, A.B., Marchal, I., Houlier, P.: Mobile augmented reality in the museum: can a lace-like technology take you closer to works of art? In: 2011 IEEE International Symposium on Mixed and Augmented Reality - Arts, Media, and Humanities, pp. 41–47. Presented at the 2011 IEEE International Symposium on Mixed and Augmented Reality - Arts, Media, and Humanities (ISMAR-AMH). IEEE, Basel, Switzerland (2011). 10.1109/ISMAR-AMH.2011.6093655

    Google Scholar 

  48. Dorward, L.J., Mittermeier, J.C., Sandbrook, C., Spooner, F.: Pokémon Go: benefits, costs, and lessons for the conservation movement: conservation implications of Pokémon Go. Conserv. Lett. 10(1), 160–165 (2017). https://doi.org/10.1111/conl.12326

    Article  Google Scholar 

  49. Kakadiaris, I.A., Islam, M.M., Xie, T., Nikou, C., Lumsden, A.B.: iRay: mobile AR using structure sensor. In: 2016 IEEE International Symposium on Mixed and Augmented Reality (ISMAR-Adjunct), pp. 127–128. Presented at the 2016 IEEE International Symposium on Mixed and Augmented Reality (ISMAR-Adjunct). IEEE, Merida, Yucatan, Mexico (2016). https://doi.org/10.1109/ismar-adjunct.2016.0058

  50. Xie, T., Islam, M.M., Lumsden, A.B., Kakadiaris, I.A.: Semi-automatic initial registration for the iRay system: a user study. In: De Paolis, Ld.T., Bourdot, P., Mongelli, A. (eds.) Augmented reality, virtual reality, and computer graphics, vol. 10325, pp. 33–42. Springer International Publishing, Cham (2017). https://doi.org/10.1007/978-3-319-60928-7_3

  51. Official Structure Sensor Store - Give Your iPad 3D Vision.: Retrieved 22 Apr 2019, from https://structure.io/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zainab Oufqir .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Oufqir, Z., El Abderrahmani, A., Satori, K. (2020). From Marker to Markerless in Augmented Reality. In: Bhateja, V., Satapathy, S., Satori, H. (eds) Embedded Systems and Artificial Intelligence. Advances in Intelligent Systems and Computing, vol 1076. Springer, Singapore. https://doi.org/10.1007/978-981-15-0947-6_57

Download citation

Publish with us

Policies and ethics