Nothing Special   »   [go: up one dir, main page]

Skip to main content

Research on Global Competition and Acoustic Search Algorithm Based on Random Attraction

  • Conference paper
  • First Online:
Data Science (ICPCSEE 2020)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1258))

  • 1326 Accesses

Abstract

In view of complex optimization problems with high nonlinearity and multiple extremums, harmony search algorithm has problems of slow convergence speed, being easy to be stalled and difficult to combine global search with local search. Therefore, a global competitive harmonic search algorithm based on stochastic attraction is proposed. Firstly, by introducing the stochastic attraction model to adjust the harmonic vector, the harmonic search algorithm was greatly improved and prone to fall into the local optimum. Secondly, the competitive search strategy was made to generate two harmony vectors for each iteration and make competitive selection. The adaptive global adjustment and local search strategy were designed to effectively balance the global and local search capabilities of the algorithm. The typical test function was used to test the algorithm. The experimental results show that the algorithm has high precision and the ability to find the global optimum compared with the existing algorithms. The overall accuracy is increased by more than 50%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Valdez, F., Vazquez, J.C., Melin, P., et al.: Comparative study of the use of fuzzy logic in improving particle swarm optimization variants for mathematical functions using co-evolution. Appl. Soft Comput. 52, 1070–1083 (2017)

    Article  Google Scholar 

  2. Yu, W.J., Ji, J.Y., Gong, Y.J., et al.: A tri-objective differential evolution approach for multimodal optimization. Inf. Sci. 423, 1–23 (2018)

    Article  MathSciNet  Google Scholar 

  3. Li, G., Cui, L., Fu, X., et al.: Artificial bee colony algorithm with gene recombination for numerical function optimization. Appl. Soft Comput. 52, 146–159 (2017)

    Article  Google Scholar 

  4. Chakri, A., Khelif, R., Benouaret, M., et al.: New directional bat algorithm for continuous optimization problems. Expert Syst. Appl. 69, 159–175 (2017)

    Article  Google Scholar 

  5. Wang, G., Guo, L.: A novel hybrid bat algorithm with harmony search for global numerical optimization. J. Appl. Math. 2013, 1–21 (2013)

    MathSciNet  MATH  Google Scholar 

  6. Wang, L., Yang, R., Xu, Y., et al.: An improved adaptive binary Harmony Search algorithm. Inf. Sci. 232(Complete), 58–87 (2013)

    Article  MathSciNet  Google Scholar 

  7. Erdal, F., Do-An, E., Saka, M.P.: Optimum design of cellular beams using harmony search and particle swarm optimizers. J. Constr. Steel Res. 67(2), 237–247 (2011)

    Article  Google Scholar 

  8. Kaveh, A., Ahangaran, M.: Discrete cost optimization of composite floor system using social harmony search model. Appl. Soft Comput. 12(1), 372–381 (2012)

    Article  Google Scholar 

  9. Geem, W.Z.: Harmony search optimisation to the pump-included water distribution network design. Civil Eng. Environ. Syst. 26(3), 211–221 (2009)

    Article  Google Scholar 

  10. Landa-Torres, I., Manjarres, D., Salcedo-Sanz, S., et al.: A multi-objective grouping Harmony Search algorithm for the optimal distribution of 24-hour medical emergency units. Expert Syst. Appl. 40(6), 2343–2349 (2013)

    Article  Google Scholar 

  11. Pan, Q.K., Suganthan, P.N., Tasgetiren, M.F., et al.: A self-adaptive global best harmony search algorithm for continuous optimization problems. Appl. Math. Comput. 216(3), 830–848 (2010)

    MathSciNet  MATH  Google Scholar 

  12. Xiang, W., An, M., Li, Y., et al.: An improved global-best harmony search algorithm for faster optimization. Expert Syst. Appl. 41(13), 5788–5803 (2014)

    Article  Google Scholar 

  13. Xia, H., Ouyang, H., Gao, L., et al.: Global competitive harmonic search algorithm. Control Decis. 31(2), 310–316 (2016)

    MATH  Google Scholar 

  14. Lihong, G., Gai-Ge, W., Heqi, W., et al.: An effective hybrid firefly algorithm with harmony search for global numerical optimization. Sci. World J. 2013, 1–9 (2013)

    Google Scholar 

  15. Wang, L., Hu, H., Liu, R., et al.: An improved differential harmony search algorithm for function optimization problems. Soft. Comput. 23(13), 4827–4852 (2019)

    Article  Google Scholar 

  16. Zhai, J., Qin, Y.: Random cross global harmonic search algorithm. Comput. Eng. Appl. 54(907)(12), 26–31 + 120 (2018)

    Google Scholar 

  17. Wang, H., Wang, W., Sun, H., et al.: Firefly algorithm with random attraction. Int. J. Bio-Inspired Comput. 8(1), 33–41 (2016)

    Article  Google Scholar 

  18. Zhao, J., Xie, Z., Lu, L., et al.: Deep learning firefly algorithm. Acta Electronica Sinica 46(11), 75–83 (2018)

    Google Scholar 

  19. Tizhoosh, H.R.: Opposition-based reinforcement learning. J. Adv. Comput. Intell. Intell. Inf. 10(4), 578–585 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoming Zhang .

Editor information

Editors and Affiliations

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, X., He, J., Shen, Q. (2020). Research on Global Competition and Acoustic Search Algorithm Based on Random Attraction. In: Qin, P., Wang, H., Sun, G., Lu, Z. (eds) Data Science. ICPCSEE 2020. Communications in Computer and Information Science, vol 1258. Springer, Singapore. https://doi.org/10.1007/978-981-15-7984-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-7984-4_15

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-7983-7

  • Online ISBN: 978-981-15-7984-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics