Abstract
In ciphertext policy attribute based encryption (CP-ABE), the private key is associated with the number of attributes and the data is encrypted with access policy. Most existing CP-ABE schemes suffer from the issue of having long ciphertext size. The ciphertext depends on the number of attributes in the access policy. Also, Most CP-ABE does not consider the recipients’ anonymity, the encryptor-specified access structure is not hidden in the ciphertexts. Zhou et al. [1] proposed a construction of privacy preserving CP-ABE with constant ciphertext. However, [1] does not consider the importance of the attributes. On the other hand, existing weighted CP-ABE [2] consider the importance of the attributes but does not protect the recipients’ anonymity and the efficiency, it requires increasing the ciphertext size with increasing number of attributes.
In this paper, we provide an affirmative answer to the above issue; we proposed a new construction of CP-ABE named as Computationally efficient Fine-Grain Cube CP-ABE with Partially Hidden Access Structure(denoted as Cube CP-ABE). CUBE CP-ABE reduces the ciphertext to constant size irrespective of the number of attribute in the access policy. Second, it protects the recipients’’ privacy. Third, it applies the idea of the weighted value. Forth, it is more granular than [2]. As far as we know, CUBE CP-ABE is the first construction with such properties. Our scheme is CPA-secure under Bilinear Diffie Hellman Exponent Assumption.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Zhou, Z., Huang, D., Wang, Z.: Efficient privacy-preserving ciphertext-policy attribute based encryption and broadcast encryption. IEEE Trans. Comput. PP(99), 1 (2013)
Liu, X., Ma, J., Xiong, J., Li, Q., Ma, J.: Ciphertext-policy weighted attribute based encryption for fine-grained access control. In: 2013 5th International Conference on Intelligent Networking and Collaborative Systems (INCoS), pp. 51–57 (2013)
Røstad, L.: Access control in healthcare information systems. Norwegian University of Science and Technology (2008)
Aydogan, Y., Stunkel, C.B., Aykanat, C., Abali, B.: Adaptive source routing in multistage interconnection networks. In: Parallel Processing Symposium 1996, Proceedings of IPPS 1996, The 10th International, pp. 258–267 (1996)
Gunti, N., Sun, W., Xu, M., Liu, Z., Niamat, M., Alam, M.: A healthcare information system with augmented access controls. In: Sheng, Q.Z., Wang, G., Jensen, Christian S., Xu, G. (eds.) APWeb 2012. LNCS, vol. 7235, pp. 792–795. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29253-8_80
Balu, A., Kuppusamy, K.: Privacy preserving ciphertext policy attribute based encryption. In: Meghanathan, N., Boumerdassi, S., Chaki, N., Nagamalai, D. (eds.) CNSA 2010. CCIS, vol. 89, pp. 402–409. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14478-3_40
Yuan, Q., Ma, C., Lin, J.: Fine-grained access control for big data based on CP-ABE in cloud computing. In: Wang, H., Qi, H., Che, W., Qiu, Z., Kong, L., Han, Z., Lin, J., Lu, Z. (eds.) ICYCSEE 2015. CCIS, vol. 503, pp. 344–352. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46248-5_42
Liu, X., Zhu, H., Ma, J., Ma, J., Ma, S.: Key-policy weighted attribute based encryption for fine-grained access control. In: 2014 IEEE International Conference on Communications Workshops (ICC), pp. 694–699 (2014)
Zhou, Z., Huang, D.: On efficient ciphertext-policy attribute based encryption and broadcast encryption: extended abstract. In: Proceedings of the 17th ACM Conference on Computer and Communications Security, New York, NY, USA, pp. 753–755 (2010)
Pérez, S., Rotondi, D., Pedone, D., Straniero, L., Núñez, M.J., Gigante, F.: Towards the CP-ABE application for privacy-preserving secure data sharing in IoT contexts. In: Barolli, L., Enokido, T. (eds.) IMIS 2017. AISC, vol. 612, pp. 917–926. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-61542-4_93
Sandhia, G.K., Kasmir Raja, S.V., Jansi, K.R.: Multi-authority-based file hierarchy hidden CP-ABE scheme for cloud security. Serv. Oriented Comput. Appl. 12(3), 295–303 (2018)
Zhang, L., Cui, Y., Mu, Y.: Improving privacy-preserving CP-ABE with hidden access policy. In: Sun, X., Pan, Z., Bertino, E. (eds.) ICCCS 2018. LNCS, vol. 11065, pp. 596–605. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00012-7_54
Qiao, Z., Liang, S., Davis, S., Jiang, H.: Survey of attribute based encryption. In: 2014 15th IEEE/ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD), pp. 1–6 (2014)
Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryption. In: Proceedings of the 2007 IEEE Symposium on Security and Privacy, Washington, DC, USA, pp. 321–334 (2007)
Masood, R., Shibli, M.A., Ghazi, Y., Kanwal, A., Ali, A.: Cloud authorization: exploring techniques and approach towards effective access control framework. Front. Comput. Sci. 9(2), 297–321 (2014). https://doi.org/10.1007/s11704-014-3160-4
Samarati, P., de Vimercati, S.C.: Access control: policies, models, and mechanisms. In: Focardi, R., Gorrieri, R. (eds.) FOSAD 2000. LNCS, vol. 2171, pp. 137–196. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45608-2_3
Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005). https://doi.org/10.1007/11426639_27
Tran, P. V. X., Dinh, T. N., Miyaji, A.: Efficient ciphertext-policy ABE with constant ciphertext length. In: 2012 7th International Conference on Computing and Convergence Technology (ICCCT), Seoul, pp. 543–549 (2012)
Chen, C., Zhang, Z., Feng, D.: Efficient ciphertext policy attribute-based encryption with constant-size ciphertext and constant computation-cost. In: Boyen, X., Chen, X. (eds.) ProvSec 2011. LNCS, vol. 6980, pp. 84–101. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24316-5_8
Ge, A., Zhang, R., Chen, C., Ma, C., Zhang, Z.: Threshold ciphertext policy attribute-based encryption with constant size ciphertexts. In: Susilo, W., Mu, Y., Seberry, J. (eds.) ACISP 2012. LNCS, vol. 7372, pp. 336–349. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31448-3_25
Doshi, N., Jinwala, D.: Hidden access structure ciphertext policy attribute based encryption with constant length ciphertext. In: Thilagam, P.S., Pais, A., Chandrasekaran, K., Balakrishnan, N. (eds.) ADCONS 2011. LNCS, vol. 7135, pp. 515–523. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29280-4_60
Li, J., Ren, K., Zhu, B., Wan, Z.: Privacy-aware attribute-based encryption with user accountability. In: Samarati, P., Yung, M., Martinelli, F., Ardagna, C.A. (eds.) ISC 2009. LNCS, vol. 5735, pp. 347–362. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04474-8_28
Nishide, T., Yoneyama, K., Ohta, K.: Attribute-based encryption with partially hidden encryptor-specified access structures. In: Bellovin, S.M., Gennaro, R., Keromytis, A., Yung, M. (eds.) ACNS 2008. LNCS, vol. 5037, pp. 111–129. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68914-0_7
Müller, S., Katzenbeisser, S.: Hiding the policy in cryptographic access control. In: Meadows, C., Fernandez-Gago, C. (eds.) STM 2011. LNCS, vol. 7170, pp. 90–105. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29963-6_8
Park, J.H., Lee, K., Susilo, W., Lee, D.H.: Fully secure hidden vector encryption under standard assumptions. Inf. Sci. 232, 188–207 (2013)
Izabachène, M., Pointcheval, D.: New anonymity notions for identity-based encryption. In: Cortier, V., Kirchner, C., Okada, M., Sakurada, H. (eds.) Formal to Practical Security. LNCS, vol. 5458, pp. 138–157. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02002-5_8
Boyen, X., Waters, B.: Anonymous hierarchical identity-based encryption (without random oracles). In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 290–307. Springer, Heidelberg (2006). https://doi.org/10.1007/11818175_17
Camenisch, J., Kohlweiss, M., Rial, A., Sheedy, C.: Blind and anonymous identity-based encryption and authorised private searches on public key encrypted data. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 196–214. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00468-1_12
Angelo De Caro, V.I.: Hidden Vector Encryption Fully Secure Against Unrestricted Queries. IACR Cryptol. EPrint Arch., vol. 2011, p. 546 (2011)
Blundo, C., Iovino, V., Persiano, G.: Private-key hidden vector encryption with key confidentiality. In: Garay, J.A., Miyaji, A., Otsuka, A. (eds.) CANS 2009. LNCS, vol. 5888, pp. 259–277. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10433-6_17
Phuong, T.V.X., Yang, G., Susilo, W.: Efficient hidden vector encryption with constant-size ciphertext. In: Kutyłowski, M., Vaidya, J. (eds.) ESORICS 2014. LNCS, vol. 8712, pp. 472–487. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11203-9_27
Zhang, Y., Zheng, D., Chen, X., Li, J., Li, H.: Computationally Efficient Ciphertext-Policy Attribute-Based Encryption with Constant-Size Ciphertexts. In: Chow, S.S.M., Liu, J.K., Hui, L.C.K., Yiu, S.M. (eds.) ProvSec 2014. LNCS, vol. 8782, pp. 259–273. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-12475-9_18
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Murad, M., Tian, Y., Rodhaan, M.A. (2020). Computationally Efficient Fine-Grain Cube CP-ABE Scheme with Partially Hidden Access Structure. In: Tian, Y., Ma, T., Khan, M. (eds) Big Data and Security. ICBDS 2019. Communications in Computer and Information Science, vol 1210. Springer, Singapore. https://doi.org/10.1007/978-981-15-7530-3_10
Download citation
DOI: https://doi.org/10.1007/978-981-15-7530-3_10
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-15-7529-7
Online ISBN: 978-981-15-7530-3
eBook Packages: Computer ScienceComputer Science (R0)