Nothing Special   »   [go: up one dir, main page]

Skip to main content

Mining Massive Time Series Data: With Dimensionality Reduction Techniques

  • Conference paper
  • First Online:
Advances in Computing and Data Sciences (ICACDS 2020)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1244))

Included in the following conference series:

Abstract

A pre-processing step to reduce the volume of data but suffer an acceptable loss of data quality before applying data mining algorithms on time series data is needed to decrease the input data size. Input size reduction is an important step in optimizing time series processing, e.g. in data mining computations. During the last two decades various time series dimensionality reduction techniques have been proposed. However no study has been dedicated to gauge these time series dimensionality reduction techniques in terms of their effectiveness of producing a reduced representation of the input time series that when applied to various data mining algorithms produces good quality results. In this paper empirical evidence is given by comparing three reduction techniques on various data sets and applying their output to four different data mining algorithms. The results show that it is sometimes feasible to use these techniques instead of using the original time series data. The comparison is evaluated by running data mining methods over the original and reduced sets of data. It is shown that one dimensionality reduction technique managed to generate results of over 83% average accuracy when compared to its benchmark results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Fu, T.: A review on time series data mining. Eng. Appl. Artif. Intell. 24(1), 164–181 (2011)

    Article  Google Scholar 

  2. Keogh, E., Kasetty, S.: On the need for time series data mining benchmarks: a survey and empirical demonstration. Data Min. Knowl. Discov. 7(4), 349–371 (2003)

    Article  MathSciNet  Google Scholar 

  3. Esling, P., Agon, C.: Time-series data mining. ACM Comput. Surv. 45(1), 1–34 (2012)

    Article  Google Scholar 

  4. Ding, H., Trajcevski, G., Scheuermann, P., Wang, X., Keogh, E.: Querying and mining of time series data: experimental comparison of representations and distance measures. Proc. VLDB Endowment 1(2), 1542–1552 (2008)

    Article  Google Scholar 

  5. Agrawal, Rakesh, Faloutsos, Christos, Swami, Arun: Efficient similarity search in sequence databases. In: Lomet, David B. (ed.) FODO 1993. LNCS, vol. 730, pp. 69–84. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-57301-1_5

    Chapter  Google Scholar 

  6. Chan, K., Fu, A.W.-c.: Efficient time series matching by wavelets. In: Proceedings of the 15th International Conference on Data Engineering, ICDE 1999, Washington DC (1999)

    Google Scholar 

  7. Keogh, E., Chakrabarti, K., Pazzani, M., Mehrotra, S.: Dimensionality reduction for fast similarity search in large time series databases. Knowl. Inf. Syst. 3(3), 263–286 (2001)

    Article  Google Scholar 

  8. Vlachos, M., Gunopulos, D.: Indexing time-series under conditions of noise. In: Data Mining in Time Series Databases, pp. 67–100. World Scientific Press (2004)

    Google Scholar 

  9. Struzik, Z., Siebes, A.: Measuring time series similarity through large singular features revealed with wavelet transformation. In: Proceedings of the 10th International Workshop on Database and Expert System Applications (1999)

    Google Scholar 

  10. Megalooikonomou, V., Li, G., Wang, Q.: A dimensionality reduction technique for efficient similarity analysis of time series databases. In: Proceedings of the Thirteenth ACM International Conference on Information and Knowledge Management, CIKM 2004, Washington DC (2004)

    Google Scholar 

  11. Chakrabarti, K., Keogh, E., Mehrotra, S., Pazzani, M.: Locally Adaptive Dimensionality reduction for indexing large time series databases. ACM Trans. Database Syst. (TODS), pp. 188–228 (2002)

    Google Scholar 

  12. Lin, J., Keogh, E., Wei, L., Lonardi, S.: Experiencing SAX: a novel symbolic representation of time series. Data Min. Knowl. Discov. 15, 107–144 (2007). https://doi.org/10.1007/s10618-007-0064-z

    Article  MathSciNet  Google Scholar 

  13. Bode, G., Schreiber, T., Baranski, M., Müller, D.: A time series clustering approach for Building Automation and Control Systems. Appl. Energy 238, 1337–1345 (2019)

    Article  Google Scholar 

  14. Caiado, J., Crato, N., Poncela, P.: A fragmented-periodogram approach for clustering big data time series. Adv. Data Anal. Classif. 14, 117–146 (2020)

    Article  MathSciNet  Google Scholar 

  15. Wismuller, A., et al.: Cluster analysis of biomedical image time-series. Int. J. Comput. Vis. 46(2), 103–128 (2002)

    Article  Google Scholar 

  16. Luo, W., Gallagher, M., Wiles, J.: Parameter-free search of time-series discord. J. Comput. Sci. Technol. 28(2), 300–310 (2013)

    Article  Google Scholar 

  17. Chuah, M.C., Fu, F.: ECG anomaly detection via time series analysis. In: Thulasiraman, Parimala, He, Xubin, Xu, Tony Li, Denko, Mieso K., Thulasiram, Ruppa K., Yang, Laurence T. (eds.) ISPA 2007. LNCS, vol. 4743, pp. 123–135. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74767-3_14

    Chapter  Google Scholar 

  18. Keogh, E., Lin, J., Fu, A.W., Van Herle, H.: Finding unusual medical time-series subsequences: algorithms and applications. IEEE Trans. Inf Technol. Biomed. 10, 429–439 (2006)

    Article  Google Scholar 

  19. Wei, L., Keogh, E., Xi, X.: SAXually explicit images: finding unusual shapes. In: Sixth International Conference on Data Mining, 2006, ICDM 2006, Hong Kong (2007)

    Google Scholar 

  20. Yi, B., Faloutsos, C.: Fast time sequence indexing for arbitrary Lp norms. In: Proceedings of the 26th International Conference on Very Large Databases, San Francisco, VLDB 2000 (2000)

    Google Scholar 

  21. Chaovalit, P., Gangopadhyay, A., Karabatis, G., Chen, Z.: Discrete wavelet transform-based time series analysis and mining. ACM Comput. Surv. (CSUR) 43(12), 1–37 (2011)

    Article  Google Scholar 

  22. Gunopulos, D.: Tutorial Slides: Dimensionality Reduction Techniques (2001)

    Google Scholar 

  23. Rand, W.: Objective criteria for the evaluation of clustering methods. J. Am. Stat. Assoc. 66, 846–850 (1971)

    Article  Google Scholar 

  24. Fowlkes, E., Mallows, C.: A method for comparing two hierarchical clusterings. J. Am. Stat. Assoc. 78, 553–569 (1983)

    Article  Google Scholar 

  25. Alcala-Fdez, J., et al.: KEEL data-mining software tool: data set repository, integration of algorithms and experimental analysis framework. J. Multiple-Valued Logic Soft Comput. 17, 255–287 (2011)

    Google Scholar 

  26. Lichman, M.: UCI Machine Learning Repository. University of California, School of Information and Computer Science, Irvine (2010). http://archive.ics.uci.edu/ml

  27. Fonollosa, J., Sheik, S., Huerta, R., Marco, S.: Reservoir Computing compensates slow response of chemosensor arrays exposed to fast varying gas concentrations in continuous monitoring. Sens. Actuators B: Chem. 215, 618–629 (2015)

    Article  Google Scholar 

  28. Chen, Y., et al.: The UCR Time Series Classification Archive, July 2015. http://www.cs.ucr.edu/~eamonn/time_series_data/

  29. Keogh, E., Lin, J., Fu, A.: HOT SAX: efficiently finding the most unusual time series subsequence. In: Proceedings of the Fifth IEEE International Conference on Data Mining, ICDM 2005, Washington (2005)

    Google Scholar 

  30. Bahadori, S., Charkari, N.M.: Increasing efficiency of time series clustering by dimension reduction techniques (2018)

    Google Scholar 

  31. Sirisambhand, K., Ratanamahatana, C.H.: A dimensionality reduction technique for time series classification using additive representation. In: Third International Congress on Information and Communication Technology. Advances in Intelligent Systems and Computing, Singapore (2019)

    Google Scholar 

  32. Wang, Lin, Lu, Faming, Cui, Minghao, Bao, Yunxia: Survey of methods for time series symbolic aggregate approximation. In: Cheng, Xiaohui, Jing, Weipeng, Song, Xianhua, Lu, Zeguang (eds.) ICPCSEE 2019. CCIS, vol. 1058, pp. 645–657. Springer, Singapore (2019). https://doi.org/10.1007/978-981-15-0118-0_50

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph G. Vella .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Borg, J., Vella, J.G. (2020). Mining Massive Time Series Data: With Dimensionality Reduction Techniques. In: Singh, M., Gupta, P., Tyagi, V., Flusser, J., Ören, T., Valentino, G. (eds) Advances in Computing and Data Sciences. ICACDS 2020. Communications in Computer and Information Science, vol 1244. Springer, Singapore. https://doi.org/10.1007/978-981-15-6634-9_45

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-6634-9_45

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-6633-2

  • Online ISBN: 978-981-15-6634-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics