Abstract
In the field of machine learning, coresets are defined as subsets of the training set that can be used to obtain a good approximation of the behavior that a given algorithm would have on the whole training set. Advantages of using coresets instead of the training set include improving training speed and allowing for a better human understanding of the dataset. Not surprisingly, coreset discovery is an active research line, with several notable contributions in literature. Nevertheless, restricting the search for representative samples to the available data points might impair the final result. In this work, neural networks are used to create sets of virtual data points, named archetypes, with the objective to represent the information contained in a training set, in the same way a coreset does. Starting from a given training set, a hierarchical clustering neural network is trained and the weight vectors of the leaves are used as archetypes on which the classifiers are trained. Experimental results on several benchmarks show that the proposed approach is competitive with traditional coreset discovery techniques, delivering results with higher accuracy, and showing a greater ability to generalize to unseen test data.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
scikit-learn: Machine Learning in Python, http://scikit-learn.org/stable/.
References
Bachem, O., Lucic, M., Krause, A.: Practical coreset constructions for machine learning (2017). arXiv:1703.06476
Campbell, T., Broderick, T.: Bayesian coreset construction via greedy iterative geodesic ascent. In: International Conference on Machine Learning (ICML) (2018). https://arxiv.org/pdf/1802.01737.pdf
Clarkson, K.L.: Coresets, sparse greedy approximation, and the Frank-Wolfe algorithm. In: ACM Transactions on Algorithms (2010). http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.145.9299&rep=rep1&type=pdf
Efroymson, M.A.: Multiple regression analysis. In: Mathematical Methods for Digital Computers (1960)
Efron, B., Hastie, T., Johnstone, I., Tibshirani, R.: Least angle regression. Ann. Statis. 32(2), 407–451 (2004). https://arxiv.org/pdf/math/0406456.pdf
Boutsidis, C., Drineas, P., Magdon-Ismail, M.: Near-optimal coresets for least-squares regression. Technical Report (2013). https://arxiv.org/pdf/1202.3505.pdf
Mallat, S., Zhang, Z.: Matching pursuits with time-frequency dictionaries. IEEE Trans. Signal Process. 42(12), 3397–3415 (1993)
Pati, Y., Rezaiifar, R., Krishnaprasad, P.: Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition. In: Proceedings of 27th Asilomar Conference on Signals, Systems and Computers, pp. 40–44 (1993). http://ieeexplore.ieee.org/document/342465/
Barbiero, P., Ciravegna, G., Piccolo, E., Cirrincione, G., Cirrincione, M., Bertotti, A.: Neural biclustering in gene expression analysis. In: 2017 International Conference on Computational Science and Computational Intelligence (CSCI), pp. 1238–1243, Dec. 2017
Tsang, I.W., Kwok, J.T., Cheung, P.-M.: Core vector machines: fast SVM training on very large data sets. J. Mach. Learn. Res. 6(Apr), 363–392 (2005)
Campbell, T., Broderick, T.: Automated Scalable Bayesian Inference via Hilbert Coresets (2017). http://arxiv.org/abs/1710.05053
Cirrincione, G., Ciravegna, G., Barbiero, P., Randazzo, V., Pasero, E.: The GH-EXIN neural network for hierarchical clustering. Neural Netw. 121, 57–73 (2020). http://www.sciencedirect.com/science/article/pii/S0893608019302060
Ciravegna, G., Cirrincione, G., Marcolin, F., Barbiero, P., Dagnes, N., Piccolo, E.: Assessing discriminating capability of geometrical descriptors for 3D face recognition by using the GH-EXIN neural network, pp. 223–233. Springer, Singapore (2020). https://doi.org/10.1007/978-981-13-8950-4_21
Breiman, L.: Pasting small votes for classification in large databases and on-line. Mach. Learn. 36(1–2), 85–103 (1999)
Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
Tikhonov, A.N.: On the stability of inverse problems. Dokl. Akad. Nauk SSSR 39(5), 195–198 (1943)
Hearst, M.A., Dumais, S.T., Osman, E., Platt, J., Scholkopf, B.: Support vector machines. IEEE Intell. Syst. Appl. 13(4), 18–28 (1998)
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)
Fisher, R.A.: The use of multiple measurements in taxonomic problems. Ann. Eugen. 7(2), 179–188 (1936)
Dheeru, D., Karra Taniskidou, E.: UCI Machine Learning Repository (2017). http://archive.ics.uci.edu/ml
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this chapter
Cite this chapter
Ciravegna, G., Barbiero, P., Cirrincione, G., Squillero, G., Tonda, A. (2021). Discovering Hierarchical Neural Archetype Sets. In: Esposito, A., Faundez-Zanuy, M., Morabito, F., Pasero, E. (eds) Progresses in Artificial Intelligence and Neural Systems. Smart Innovation, Systems and Technologies, vol 184. Springer, Singapore. https://doi.org/10.1007/978-981-15-5093-5_24
Download citation
DOI: https://doi.org/10.1007/978-981-15-5093-5_24
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-15-5092-8
Online ISBN: 978-981-15-5093-5
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)