Nothing Special   »   [go: up one dir, main page]

Skip to main content

FaceID: Verification of Face in Selfie and ID Document

  • Conference paper
  • First Online:
Computer Vision and Image Processing (CVIP 2019)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1148))

Included in the following conference series:

  • 933 Accesses

Abstract

Various activities in everyday life require us to verify our identity by demonstrating our ID document containing face images, for example, voter ID, passports, driver licence, to human administrators. However, this procedure is reluctant, unreliable and labor comprehensive. An automatic framework for verifying ID record photographs to live face pictures (selfies) progressively and with high precision is required. Cross-domain biometrics is another requirement, which represents se-veral additional challenges, including harsh illumination conditions, pose variations, noise, among others. In this paper, we propose an algorithm to meet this objective. We first extract faces from ID document and selfie using Multi-task Cascaded Convolutional Networks. To extract prominent features from the data, we apply a VGG face model which is a CNN-based transfer learning approach. Finally, we validate the methods using a novel FaceId-Selfie dataset comprising 600 individuals using cosine distance measure. Results show that 74% accuracy is achieved on FaceId-Selfie dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zhao, W., Chellappa, R., Phillips, P.J., Rosenfeld, A.: Face recognition: a literature survey. ACM Comput. Surv. 35(4), 399–458 (2003)

    Article  Google Scholar 

  2. White, D., Kemp, R.I., Jenkins, R., Matheson, M., Burton, A.M.: Passport officers errors in face matching. PLoS ONE 9, e103510 (2014)

    Article  Google Scholar 

  3. Wikipedia: Australia smartgate, SmartGate (2018). https://en.wikipedia.org/wiki/

  4. Wikipedia: ePassport gates (2018). https://en.wikipedia.org/wiki/EPassportgates

  5. U.S. Customs and Border Protection: Automated passport control (APC) (2018). https://www.cbp.gov/travel/us-citizens/apc

  6. Heng, X.: An Perimeter Security Equipment Co.: What is ID-person matching? (2018). http://www.xjhazj.com/xjhazj/vipdoc/8380983.html

  7. Jumio: Netverify ID verification (2018). https://www.jumio.com/trusted-identity/netverify

  8. Mitek: Mitek ID verification (2018). https://www.miteksystems.com/mobile-verify

  9. Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, pp. I-511–I-518 (2001)

    Google Scholar 

  10. Ahonen, T., Hadid, A., Pietikainen, M.: Face description with local binary patterns: application to face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 28(12), 2037–2041 (2006)

    Article  Google Scholar 

  11. Hafed, Z.M., Levine, M.D.: Face recognition using the discrete cosine transform. Int. J. Comput. Vis. 43(3), 167–188 (2001)

    Article  Google Scholar 

  12. Chen, D., Cao, X., Wen, F., Sun, J.: Blessing of dimensionality: highdimensional feature and its efficient compression for face verification. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 3025–3032 (2013)

    Google Scholar 

  13. Schroff, F., Kalenichenko, D., Philbin, J.: FaceNet: a unified embedding for face recognition and clustering. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 815–823 (2015)

    Google Scholar 

  14. Huang, G.B., Lee, H., Learned-Miller, E.: Learning hierarchical representations for face verification with convolutional deep belief networks. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2518–2525 (2012)

    Google Scholar 

  15. Starovoitov, V., Samal, D., Sankur, B.: Matching of faces in camera images and document photographs. In: ICASSP (2000)

    Google Scholar 

  16. Starovoitov, V., Samal, D., Briliuk, D.: Three approaches for face recognition. In: International Conference on Pattern Recognition and Image Analysis (2002)

    Google Scholar 

  17. Bourlai, T., Ross, A., Jain, A.: On matching digital face images against scanned passport photos. In: IEEE International Conference on Biometrics, Identity and Security (BIDS) (2009)

    Google Scholar 

  18. Bourlai, T., Ross, A., Jain, A.K.: Restoring degraded face images: a case study in matching faxed, printed, and scanned photos. IEEE Trans. TIFS 6, 371–384 (2011)

    Google Scholar 

  19. Shi, Y., Jain, A.K.: DocFace: matching ID document photos to selfies. In: BTAS (2018)

    Google Scholar 

  20. Shi, Y., Jain, A.K.: Docface+: ID document to selfie* matching. arXiv:1809.05620v2 (2018)

  21. Folego, G., Angeloni, M.A., Stuchi, J.A., Godoy, A., Rocha, A.: Cross-domain face verification: matching ID document and self-portrait photographs. arXiv:1611.05755v1 (2016)

  22. Li, S.Z., Jain, A.K. (eds.): Encyclopedia of Biometrics. Springer, Boston (2015). https://doi.org/10.1007/978-1-4899-7488-4

    Book  Google Scholar 

  23. Li, S.Z., Chu, R., Liao, S., Zhang, L.: Illumination invariant face recognition using near-infrared images. IEEE Trans. PAMI 87, 2746–2764 (2007)

    Google Scholar 

  24. Choi, J., Hu, S., Young, S.S., Davis, L.S.: Thermal to visible face recognition. In: SPIE DSS-DS107: Biometric Technology for Human Identification IX (2012)

    Google Scholar 

  25. Tang, X., Wang, X.: Face photo recognition using sketch. In: ICIP (2002)

    Google Scholar 

  26. Wang, X., Tang, X.: Face photo-sketch synthesis and recognition. IEEE Trans. PAMI 31, 1955–1967 (2008)

    Article  Google Scholar 

  27. Liu, Q., Tang, X., Jin, H., Lu, H., Ma, S.: A nonlinear approach for face sketch synthesis and recognition. In: CVPR (2005)

    Google Scholar 

  28. Gao, X., Zhong, J., Li, J., Tian, C.: Face sketch synthesis algorithm based on E-HMM and selective ensemble. IEEE Trans. Circuits Syst. Video Technol. 18, 487–496 (2008)

    Article  Google Scholar 

  29. Liao, S., Yi, D., Lei, Z., Qin, R., Li, S.Z.: Heterogeneous face recognition from local structures of normalized appearance. In: Tistarelli, M., Nixon, M.S. (eds.) ICB 2009. LNCS, vol. 5558, pp. 209–218. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01793-3_22

    Chapter  Google Scholar 

  30. Klare, B., Jain, A.K.: Heterogeneous face recognition: matching NIR to visible light images. In: ICPR. IEEE (2010)

    Google Scholar 

  31. Klare, B.F., Jain, A.K.: Heterogeneous face recognition using kernel prototype similarities. IEEE Trans. PAMI 35, 1410–1422 (2013)

    Article  Google Scholar 

  32. Sengupta, S., Cheng, J.C., Castillo, C.D., Patel, V.M., Chellappa, R., Jacobs, D.W.: Frontal to profile face verification in the wild. In: IEEE Conference on Applications of Computer Vision (2016)

    Google Scholar 

  33. Zhu, X., et al.: Large-scale bi-sample learning on ID vs. spot face recognition. arXiv:1806.03018 (2018)

  34. Deb, D., Nain, N., Jain, A.K.: Longitudinal study of child face recognition. In: International Conference on Biometrics, ICB 2018, Gold Coast, Australia, pp. 225–232 (2018)

    Google Scholar 

  35. Chandaliya, P.K., Garg, P., Nain, N.: Retrieval of facial images re-rendered with natural aging effect using child facial image and age. In: 14th International Conference on Signal Image Technology and Internet Based System, Spain, pp. 457–464 (2018)

    Google Scholar 

  36. Chandaliya, P.K., Nain, N.: Conditional perceptual adversarial variational autoencoder for age progression and regression on children face. In: 12th IAPR International Conference on Biometrics, Crete, Greece, pp. 200–208 (2019)

    Google Scholar 

  37. Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE Signal Process. Lett. 23(10), 1499–1503 (2016)

    Article  Google Scholar 

  38. Parkhi, O.M., Vedaldi, A., Zisserman, A.: Deep face recognition. In: British Machine Vision Conference (2015)

    Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the support of NVIDIA Corporation with the donation of the Titan Xp GPU used for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shalini Yadav .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Paliwal, R., Yadav, S., Nain, N. (2020). FaceID: Verification of Face in Selfie and ID Document. In: Nain, N., Vipparthi, S., Raman, B. (eds) Computer Vision and Image Processing. CVIP 2019. Communications in Computer and Information Science, vol 1148. Springer, Singapore. https://doi.org/10.1007/978-981-15-4018-9_40

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-4018-9_40

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-4017-2

  • Online ISBN: 978-981-15-4018-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics