Nothing Special   »   [go: up one dir, main page]

Skip to main content

VAR and GSTAR-Based Feature Selection in Support Vector Regression for Multivariate Spatio-Temporal Forecasting

  • Conference paper
  • First Online:
Soft Computing in Data Science (SCDS 2018)

Abstract

Multivariate time series modeling is quite challenging particularly in term of diagnostic checking for assumptions required by the underlying model. For that reason, nonparametric approach is rapidly developed to overcome that problem. But, feature selection to choose relevant input becomes new issue in nonparametric approach. Moreover, if the multiple time series data are observed from different sites, then the location possibly play the role and make the modeling become more complicated. This work employs Support Vector Regression (SVR) to model the multivariate time series data observed from three different locations. The feature selection is done based on Vector Autoregressive (VAR) model that ignore the spatial dependencies as well as based on Generalized Spatio-Temporal Autoregressive (GSTAR) model that involves spatial information into the model. The proposed approach is applied for modeling and forecasting rainfall in three locations in Surabaya, Indonesia. The empirical results inform that the best method for forecasting rainfall in Surabaya is the VAR-based SVR approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kuswanto, H., Salamah, M., Retnaningsih, S.M., Prastyo, D.D.: On the impact of climate change to agricultural productivity in East Java. J. Phys: Conf. Ser. 979(012092), 1–8 (2018)

    Google Scholar 

  2. Adams, R.M., Fleming, R.A., Chang, C.C., McCarl, B.A., Rosenzweig, C.: A reassessment of the economic effects of global climate change on U.S. agriculture. Clim. Change 30(2), 147–167 (1995)

    Article  Google Scholar 

  3. Schlenker, W., Lobell, D.B.: Robust negative impacts of climate change on African agriculture. Environ. Res. Lett. 5(014010), 1–8 (2010)

    Google Scholar 

  4. Tsay, R.S.: Multivariate Time Series Analysis. Wiley, Chicago (2014)

    MATH  Google Scholar 

  5. Suhartono, Prastyo, D.D., Kuswanto, H., Lee, M.H.: Comparison between VAR, GSTAR, FFNN-VAR, and FFNN-GSTAR models for forecasting oil production. Matematika 34(1), 103–111 (2018)

    Article  MathSciNet  Google Scholar 

  6. Haerdle, W.K., Prastyo, D.D., Hafner, C.M.: Support vector machines with evolutionary model selection for default prediction. In: Racine, J., Su, L., Ullah, A. (eds.) The Oxford Handbook of Applied Nonparametric and Semiparametric Econometrics and Statistics, pp. 346–373. Oxford University Press, New York (2014)

    Google Scholar 

  7. Boser, B.E., Guyon, I.M., Vapnik, V.N.: A training algorithm for optimal margin classifiers. In: Proceedings of the Fifth Annual Workshop on Computational Learning Theory, pp. 144–152. ACM, Pittsburgh (1992)

    Google Scholar 

  8. Smola, A.J., Scholköpf, B.: A tutorial on support vector regression, statistics and computing. Stat. Comput. 14(3), 192–222 (2004)

    Article  Google Scholar 

  9. Suykens, J.A., Vandewalle, J.: Least squares support vector machines classifiers. Neural Process. Lett. 9(3), 293–300 (1999)

    Article  Google Scholar 

  10. Borovkova, S., Lopuhaä, H.P., Ruchjana, B.N.: Consistency and asymptotic normality of least squares estimators in Generalized STAR models. Stat. Neerl. 62(4), 482–508 (2008)

    Article  MathSciNet  Google Scholar 

  11. Bonar, H., Ruchjana, B.N., Darmawan, G.: Development of generalized space time autoregressive integrated with ARCH error (GSTARI - ARCH) model based on consumer price index phenomenon at several cities in North Sumatra province. In: Proceedings of the 2nd International Conference on Applied Statistics (ICAS II). AIP Conference Proceedings 1827 (020009), Bandung (2017)

    Google Scholar 

  12. Khotimah, C., Purnami, S.W., Prastyo, D.D., Chosuvivatwong, V., Spriplung, H.: Additive survival least square support vector machines: a simulation study and its application to cervical cancer prediction. In: Proceedings of the 13th IMT-GT International Conference on Mathematics, Statistics and their Applications (ICMSA). AIP Conference Proceedings 1905 (050024), Kedah (2017)

    Google Scholar 

  13. Khotimah, C., Purnami, S.W., Prastyo, D.D.: Additive survival least square support vector machines and feature selection on health data in Indonesia. In: Proceedings of the International Conference on Information and Communications Technology (ICOIACT). IEEE Xplore (2018)

    Google Scholar 

  14. Suhartono, Saputri, P.D., Amalia, F.F., Prastyo, D.D., Ulama, B.S.S.: Model selection in feedforward neural networks for forecasting inflow and outflow in Indonesia. In: Mohamed, A., Berry, M., Yap, B. (eds.) SCDS 2017. CCIS, vol. 788, pp. 95–105. Springer, Singapore (2017). https://doi.org/10.1007/978-981-10-7242-0_8

    Chapter  Google Scholar 

Download references

Acknowledgement

This research was supported by DRPM under the scheme of “Penelitian Dasar Unggulan Perguruan Tinggi (PDUPT)” with contract number 930/PKS/ITS/2018. The authors thank to the General Director of DIKTI for funding and to the referees for the useful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dedy Dwi Prastyo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Prastyo, D.D., Nabila, F.S., Suhartono, Lee, M.H., Suhermi, N., Fam, SF. (2019). VAR and GSTAR-Based Feature Selection in Support Vector Regression for Multivariate Spatio-Temporal Forecasting. In: Yap, B., Mohamed, A., Berry, M. (eds) Soft Computing in Data Science. SCDS 2018. Communications in Computer and Information Science, vol 937. Springer, Singapore. https://doi.org/10.1007/978-981-13-3441-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-3441-2_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-3440-5

  • Online ISBN: 978-981-13-3441-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics