Nothing Special   »   [go: up one dir, main page]

Skip to main content

Multiview Machine Learning

  • Book
  • © 2019

Overview

  • The first comprehensive and in-depth book on multiview machine learning
  • Blends theory and practice, presenting state-of-the-art methodologies
  • Equips readers to handle complex data analysis tasks with advanced machine learning tools

This is a preview of subscription content, log in via an institution to check access.

Access this book

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

About this book

This book provides a unique, in-depth discussion of multiview learning, one of the fastest developing branches in machine learning. Multiview Learning has been proved to have good theoretical underpinnings and great practical success. This book describes the models and algorithms of multiview learning in real data analysis. Incorporating multiple views to improve the generalization performance, multiview learning is also known as data fusion or data integration from multiple feature sets. This self-contained book is applicable for multi-modal learning research, and requires minimal prior knowledge of the basic concepts in the field. It is also a valuable reference resource for researchers working in the field of machine learning and also those in various application domains.  

Similar content being viewed by others

Keywords

Table of contents (9 chapters)

Authors and Affiliations

  • Department of Computer Science and Technology, East China Normal University, Shanghai, China

    Shiliang Sun, Liang Mao, Ziang Dong, Lidan Wu

About the authors

Shiliang Sun received his Ph.D. degree in pattern recognition and intelligent systems from Tsinghua University, Beijing, China, in 2007. He is now a professor at the Department of Computer Science and Technology and the head of the Pattern Recognition and Machine Learning Research Group, East China Normal University, Shanghai, China. His current research interests include multiview learning, kernel methods, learning theory, probabilistic models, approximate inference, and sequential modeling. He has published 150+ research articles at peer-reviewed journals and international conferences. Prof. Sun is on the editorial board of several international journals, including IEEE Transactions on Neural Networks and Learning Systems, Information Fusion, and Pattern Recognition.

Liang Mao is a senior Ph.D. student at the Department of Computer Science and Technology and the Pattern Recognition and Machine Learning Research Group, East China Normal University, Shanghai, China.His main research interest is multiview learning and probabilistic models. 

Bibliographic Information

Publish with us