Abstract
In MOEA/D, the replacement strategy plays a key role in balancing diversity and convergence. However, existing adaptive replacement strategies either focus on neighborhood or global replacement strategy, which may have no obvious effects on balance of diversity and convergence in tackling complicated MOPs. In order to overcome this shortcoming, we propose a hybrid mechanism balancing neighborhood and global replacement strategy. In this mechanism, a probability threshold \( p_{t} \) is applied to determine whether to execute a neighborhood or global replacement strategy, which could balance diversity and convergence. Furthermore, we design an offspring generation method to generate the high-quality solution for each subproblem, which can ease mismatch between subproblems and solutions. Based on the classic MOEA/D, we design a new algorithm framework, called MOEA/D-HRS. Compared with other state-of-the-art MOEAs, experimental results show that the proposed algorithm obtains the best performance.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Zhou, A., Qu, B.Y., Li, H., Zhao, S.Z., Suganthan, P.N., Zhang, Q.: Multiobjective evolutionary algorithms: a survey of the state of the art. Swarm Evol. Comput. 1(1), 32–49 (2011)
Srinivas, N., Deb, K.: Muiltiobjective optimization using nondominated sorting in genetic algorithms. Evol. Comput. 2(3), 221–248 (1994)
Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. In: Schoenauer, M., et al. (eds.) PPSN 2000. LNCS, vol. 1917, pp. 849–858. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45356-3_83
Zitzler, E., Thiele, L.: Multiobjective optimization using evolutionary algorithms—a comparative case study. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 292–301. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0056872
Laumanns, M.: SPEA2: improving the strength Pareto evolutionary algorithm. Eidgenössische Technische Hochschule Zürich (ETH), Institut für Technische Informatik und Kommunikationsnetze (TIK) (2001)
Zitzler, E., Künzli, S.: Indicator-based selection in multiobjective search. In: Yao, X., et al. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 832–842. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30217-9_84
Basseur, M., Zitzler, E.: A preliminary study on handling uncertainty in indicator-based multiobjective optimization. In: Rothlauf, F., Branke, J., Cagnoni, S., Costa, E., Cotta, C., Drechsler, R., Lutton, E., Machado, P., Moore, J.H., Romero, J., Smith, G.D., Squillero, G., Takagi, H. (eds.) EvoWorkshops 2006. LNCS, vol. 3907, pp. 727–739. Springer, Heidelberg (2006). https://doi.org/10.1007/11732242_71
Bader, J., Zitzler, E.: HypE: an algorithm for fast hypervolume-based many-objective optimization. Evol. Comput. 19(1), 45–76 (2011)
Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)
Li, H., Zhang, Q.: Multiobjective optimization problems with complicated pareto sets, MOEA/D and NSGA-II. IEEE Trans. Evol. Comput. 13(2), 284–302 (2009)
Zhang, Q., Liu, W., Li, H.: The performance of a new version of MOEA/D on CEC09 unconstrained mop test instances. In: 2009 IEEE Congress on Evolutionary Computation, pp. 203–208. IEEE (2009)
Mashwani, W.K., Salhi, A.: A decomposition-based hybrid multiobjective evolutionary algorithm with dynamic resource allocation. Appl. Soft Comput. 12(9), 2765–2780 (2012)
Ma, X., et al.: MOEA/D with opposition-based learning for multiobjective optimization problem. Neurocomputing 146, 48–64 (2014)
Zhou, A., Zhang, Y., Zhang, G., Gong, W.: On neighborhood exploration and subproblem exploitation in decomposition based multiobjective evolutionary algorithms. In: 2017 IEEE Congress on Evolutionary Computation, pp. 1704–1711. IEEE (2015)
Zhang, H., Zhou, A., Zhang, G., Singh, H.K.: Accelerating MOEA/D by Nelder-Mead method. In: 2017 IEEE Congress on Evolutionary Computation, pp. 976–983. IEEE (2017)
Zhang, J., Zhou, A., Zhang, G.: A multiobjective evolutionary algorithm based on decomposition and preselection. In: Gong, M., Pan, L., Song, T., Tang, K., Zhang, X. (eds.) BIC-TA 2015. CCIS, vol. 562, pp. 631–642. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-49014-3_56
Lin, X., Zhang, Q., Kwong, S.: A decomposition based multiobjective evolutionary algorithm with classification. In: 2016 IEEE Congress on Evolutionary Computation, pp. 3292–3299. IEEE (2016)
Zhang, J., Zhou, A., Tang, K., and Zhang, G.: Preselection via classification: a case study on evolutionary multiobjective optimization. arXiv:1708.01146 (2017)
Chen, X., Shi, C., Zhou, A., Wu, B ., Cai, Z.: A decomposition based multi objective evolutionary algorithm with semi-supervised classification. In: 2017 IEEE Congress on Evolutionary Computation, pp. 797-804. IEEE (2017)
Zhao, S.Z., Suganthan, P.N., Zhang, Q.: Decomposition-based multiobjective evolutionary algorithm with an ensemble of neighborhood sizes. IEEE Trans. Evol. Comput. 16(3), 442–446 (2012)
Li, K., Fialho, A., Kwong, S., Zhang, Q.: Adaptive operator selection with bandits for a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 18(1), 114–130 (2014)
Venske, S.M., GonçAlves, R.A., Delgado, M.R.: ADEMO/D: multiobjective optimization by an adaptive differential evolution algorithm. Neurocomputing 127(127), 65–77 (2014)
Lin, Q., et al.: A novel adaptive control strategy for decomposition-based multiobjective algorithm. Comput. Oper. Res. 78, 94–107 (2016)
Lin, Q., et al.: Adaptive composite operator selection and parameter control for multiobjective evolutionary algorithm. Inf. Sci. 339, 332–352 (2016)
Li, K., Zhang, Q., Kwong, S., Li, M., Wang, R.: Stable matching-based selection in evolutionary multiobjective optimization. IEEE Trans. Evol. Comput. 18(6), 909–923 (2014)
Li, K., Kwong, S., Zhang, Q., Deb, K.: Interrelationship-based selection for decomposition multiobjective optimization. IEEE Trans. Cybern. 45(10), 2076–2088 (2015)
Wang, Z., Zhang, Q., Zhou, A., Gong, M., Jiao, L.: Adaptive replacement strategies for MOEA/D. IEEE Trans. Cybern. 46(2), 474–486 (2017)
Tam, H.H., Leung, M.F., Wang, Z., Ng, S.C., Cheung, C.C., Lui, A.K.: Improved adaptive global replacement scheme for MOEA/D-AGR. In: 2016 IEEE congress on Evolutionary Computation, pp. 2153–2160. IEEE (2016)
Tan, Y., Zhu, Y.: Fireworks algorithm for optimization. In: Tan, Y., Shi, Y., Tan, K.C. (eds.) ICSI 2010. LNCS, vol. 6145, pp. 355–364. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13495-1_44
Yu, C., Kelley L., Zheng, S., Tan Y.: Fireworks algorithm with differential mutation for solving the CEC 2014 competition problems. In: 2014 IEEE congress on Evolutionary Computation, pp. 3238–3245. IEEE (2014)
Liu, L., Zheng, S., Tan, Y.: S-metric based multi-objective fireworks algorithm. In: IEEE Congress on Evolutionary Computation, pp. 1257–1264 (2015)
Cai, Z., Wang, Y.: A multiobjective optimization-based evolutionary algorithm for constrained optimization. IEEE Trans. Evol. Comput. 10(6), 658–675 (2006)
Tsutsui, S., Ghosh, A.: A study on the effect of multi-parent recombination in real coded genetic algorithms. In: IEEE International Conference on Evolutionary Computation Proceedings, IEEE World Congress on Computational Intelligence, pp. 828–833 (1998)
Das, S., Suganthan, P.N.: Differential evolution: a survey of the state-of-the-art. IEEE Trans. Evol. Comput. 15(1), 4–31 (2011)
Deb, K., Goyal, M.: A combined genetic adaptive search (GeneAS) for engineering design. Comput. Sci. Inform. 26, 30–45 (1996)
Tizhoosh, H.R.: Opposition-based reinforcement learning. J. Adv. Comput. Intell. Intell. Inform. 10(4), 578–585 (2006)
Vapnik, V.N.: Statistical learning theory. Encycl. Sci. Learn. 41(4), 3185–3185 (1998)
Tanabe, R., Fukunaga, A.: Success-history based parameter adaptation for differential evolution. In: 2013 IEEE Congress on Evolutionary Computation, pp. 71–78. IEEE (2013)
Mallipeddi, R., Wu, G., Lee, M., Suganthan, P.N.: Gaussian adaptation based parameter adaptation for differential evolution. In: 2014 IEEE Congress on Evolutionary Computation, pp. 1760–1767. IEEE (2014)
Jin, Y.: A comprehensive survey of fitness approximation in evolutionary computation. Soft Comput. 9(1), 3–12 (2005)
You, H., Yang, M., Wang, D., Jia, X.: Kriging model combined with Latin hypercube sampling for surrogate modeling of analog integrated circuit performance. In: International Symposium on Quality of Electronic Design, pp. 554–558. IEEE (2009)
Miettinen, K.: Nonlinear Multiobjective Optimization. Kluwer Academic Publishers, Boston (1999)
Li, Y., Zhou, A., Zhang, G.: An MOEA/D with multiple differential evolution mutation operators. In: 2014 IEEE Congress on Evolutionary Computation, pp. 397–404. IEEE (2014)
Naujoks, B., Beume, N., Emmerich, M.: Multi-objective optimisation using S-metric selection: application to three-dimensional solution spaces. In: 2015 IEEE Congress on Evolutionary Computation, pp. 1282–1289. IEEE (2005)
Acknowledgments
This work is supported in part by the National Natural Science Foundation of China (No. 61375058, 61673397), and the Co-construction Project of Beijing Municipal Commission of Education.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Chen, X., Shi, C., Zhou, A., Xu, S., Wu, B. (2018). A Hybrid Replacement Strategy for MOEA/D. In: Qiao, J., et al. Bio-inspired Computing: Theories and Applications. BIC-TA 2018. Communications in Computer and Information Science, vol 951. Springer, Singapore. https://doi.org/10.1007/978-981-13-2826-8_22
Download citation
DOI: https://doi.org/10.1007/978-981-13-2826-8_22
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-13-2825-1
Online ISBN: 978-981-13-2826-8
eBook Packages: Computer ScienceComputer Science (R0)