Nothing Special   »   [go: up one dir, main page]

Skip to main content

Dynamic Multimodal Optimization Using Brain Storm Optimization Algorithms

  • Conference paper
  • First Online:
Bio-inspired Computing: Theories and Applications (BIC-TA 2018)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 951))

Abstract

Dynamic multimodal optimization (DMO) problem is introduced and solved with brain storm optimization (BSO) algorithms in this paper. A dynamic multimodal optimization problem is defined as an optimization problem with multiple global optima and characteristics of global optima are changed during the search process. The effectiveness of BSO algorithm is validated on a test problem which was constructed based on the dynamic optimization and multimodal optimization. Results show that BSO algorithm is an efficient and robust optimization method for solving dynamic multimodal optimization problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Jin, Y., Branke, J.: Evolutionary optimization in uncertain environments-a survey. IEEE Trans. Evol. Comput. 9(3), 303–317 (2005)

    Article  Google Scholar 

  2. Wang, Y., Dang, C.: An evolutionary algorithm for dynamic multi-objective optimization. Appl. Math. Comput. 205(1), 6–18 (2008)

    MathSciNet  MATH  Google Scholar 

  3. Parrott, D., Li, X.: Locating and tracking multiple dynamic optima by a particle swarm model using speciation. IEEE Trans. Evol. Comput. 10(4), 440–458 (2006)

    Article  Google Scholar 

  4. Rönkkönen, J.: Continuous multimodal global optimization with differential evolution-based methods. Department of information technology, Lappeenranta University of Technology (2009)

    Google Scholar 

  5. Li, X.: Niching without niching parameters: particle swarm optimization using a ring topology. IEEE Trans. Evol. Comput. 14(1), 150–169 (2010)

    Article  Google Scholar 

  6. Shi, Y.: Brain storm optimization algorithm. In: Tan, Y., Shi, Y., Chai, Y., Wang, G. (eds.) ICSI 2011. LNCS, vol. 6728, pp. 303–309. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21515-5_36

    Chapter  Google Scholar 

  7. Shi, Y.: An optimization algorithm based on brainstorming process. Int. J. Swarm Intell. Res. 2(4), 35–62 (2011)

    Article  Google Scholar 

  8. Cheng, S., Qin, Q., Chen, J., Shi, Y.: Brain storm optimization algorithm: a review. Artif. Intell. Rev. 46(4), 445–458 (2016)

    Article  Google Scholar 

  9. Shi, Y.: Brain storm optimization algorithm in objective space. In: Proceedings of 2015 IEEE Congress on Evolutionary Computation, Sendai, Japan, pp. 1227–1234 (2015)

    Google Scholar 

  10. Cheng, S., et al.: A comprehensive survey of brain storm optimization algorithms. In: Proceedings of 2017 IEEE Congress on Evolutionary Computation, Donostia, San Sebastián, Spain, pp. 1637–1644 (2017)

    Google Scholar 

  11. Song, Z., Peng, J., Li, C., Liu, P.X.: A simple brain storm optimization algorithm with a periodic quantum learning strategy. IEEE Access 6, 19968–19983 (2017)

    Article  Google Scholar 

  12. Cheng, S., Shi, Y., Qin, Q., Gao, S.: Solution clustering analysis in brain storm optimization algorithm. In: Proceedings of The 2013 IEEE Symposium on Swarm Intelligence, Singapore, pp. 111–118 (2013)

    Google Scholar 

  13. Goh, C.K., Tan, K.C.: A competitive-cooperative coevolutionary paradigm for dynamic multiobjective optimization. IEEE Trans. Evol. Comput. 13(1), 103–127 (2009)

    Article  Google Scholar 

  14. Jiang, S., Yang, S.: Evolutionary dynamic multiobjective optimization: benchmarks and algorithm comparisons. IEEE Trans. Cybern. 47(1), 198–211 (2017)

    Article  Google Scholar 

  15. Cheng, S., Chen, J., Lei, X., Shi, Y.: Locating multiple optima via developmental swarm intelligence. IEEE Access 6, 17039–17049 (2018)

    Article  Google Scholar 

  16. Qu, B.Y., Liang, J., Suganthan, P.: Niching particle swarm optimization with local search for multi-modal optimization. Inf. Sci. 197, 131–143 (2012)

    Article  Google Scholar 

  17. Qu, B.Y., Suganthan, P., Liang, J.: Differential evolution with neighborhood mutation for multimodal optimization. IEEE Trans. Evol. Comput. 16(5), 601–614 (2012)

    Article  Google Scholar 

  18. Li, X., Engelbrecht, A., Epitropakis, M.G.: Benchmark functions for CEC 2013 special session and competition on niching methods for multimodal function optimization. Evolutionary Computation and Machine Learning Group, RMIT University (2013)

    Google Scholar 

  19. Burke, E.K., Hyde, M.R., Kendall, G.: Providing a memory mechanism to enhance the evolutionary design of heuristics. In: Proceedings of 2010 IEEE Congress on Evolutionary Computation, pp. 1–8 (2010)

    Google Scholar 

  20. Shi, Y.: Developmental swarm intelligence: developmental learning perspective of swarm intelligence algorithms. Int. J. Swarm Intell. Res. 5(1), 36–54 (2014)

    Article  Google Scholar 

  21. Shi, Y.: Unified swarm intelligence algorithms. In: Shi, Y. (ed.) Critical Developments and Applications of Swarm Intelligence, pp. 1–26 (2018)

    Google Scholar 

Download references

Acknowledgments

This work was jointly supported by National Natural Science Foundation of China (No. 61671041, 61773119, 61771297, and 61703256), and the Fundamental Research Funds for the Central Universities under Grant GK201703062.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shi Cheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cheng, S., Lu, H., Song, W., Chen, J., Shi, Y. (2018). Dynamic Multimodal Optimization Using Brain Storm Optimization Algorithms. In: Qiao, J., et al. Bio-inspired Computing: Theories and Applications. BIC-TA 2018. Communications in Computer and Information Science, vol 951. Springer, Singapore. https://doi.org/10.1007/978-981-13-2826-8_21

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-2826-8_21

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-2825-1

  • Online ISBN: 978-981-13-2826-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics