Abstract
Recently, mining least association rule from the sequential data becomes more important in certain domain areas such as education, healthcare, text mining, etc. due to its uniqueness and usefulness. However, discovering such rule is a great challenge because it involves with a set of least items which usually holds a very low in term of support. Therefore, in this paper propose a model for mining sequential least association rule (2M-SELAR) that embedded with SELAR algorithm, and Critical Relative Support (CRS) and Definite Factor (DF) measures. The experimental results reveal that 2M-SELAR can successfully generate the desired rule from the given datasets.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large databases. In: Proceedings of the 20th International Conference on Very Large Data Bases, pp. 487–499 (1994)
Mannila, H., Toivonen, H., Verkamo, A.I.: Discovery of frequent episodes in event sequences. Data Min. Knowl. Disc. 1, 259–289 (1997)
Park, J.S., Chen, M.S., Yu, P.S.: An effective hash-based algorithm for mining association rules. In: Proceedings of the ACM-SIGMOD (SIGMOD’95), pp. 175–186. ACM Press, New York (1995)
Savasere, A., Omiecinski, E., Navathe, S.: An efficient algorithm for mining association rules in large databases. In: Proceedings of the 21st International Conference on Very Large Data Bases (VLDB’95), pp. 432–443. ACM Press, New York (1995)
Fayyad, U., Patesesky-Shapiro, G., Smyth, P., Uthurusamy, R.: Advances in Knowledge Discovery and Data Mining. MIT, Cambridge (1996)
Bayardo, R.J.: Efficiently mining long patterns from databases. In: Proceedings of the ACM-SIGMOD International Conference on Management of Data (SIGMOD’98), pp. 85–93. ACM Press, New York (1998)
Zaki, M.J. Hsiao, C.J.: CHARM: an efficient algorithm for closed itemset mining. In: Proceedings of the 2002 SIAM International Conference of Data Mining, pp. 457–473. SIAM, Philadelphia, PA (2002)
Agarwal, R., Aggarwal, C., Prasad, V.V.V.: A tree projection algorithm for generation of frequent itemsets. J. Parallel Distrib. Comput. 61, 350–371 (2001)
Liu, B., Hsu, W., Ma, Y.: Mining association rules with multiple minimum support. In: Proceedings of the 5th ACM SIGKDD, pp. 337–341. ACM Press, New York (1999)
Abdullah, Z., Herawan, T., Deris, M.M.: Scalable model for mining critical least association rules. In Zhu, R. et al. (eds.) ICICA 2010, LNCS 6377, pp. 509–516. Springer, Heidelberg (2010)
Cristabal, R., Sebastián, V., García, E.: Data mining in course management systems: Moodle case study and tutorial. Comput. Educ. pp. 368–384 (2008)
Ahmad, N., Abdullah, Z., Herawan, T., Deris, M.M.: Scalable technique to discover items support from Trie data structure. In: Liu, B. et al. (eds.) ICICA 2012, LNCS 7473, pp. 500–507 (2012)
Abdullah, Z., Herawan, T., Deris, M.M.: Detecting definite least association rule in medical database. LNEE 285, 127–134 (2013)
Abdullah, Z., Herawan, T., Noraziah, A., Deris, M.M.: Mining significant association rules from educational data using critical relative support approach. Procedia Soc. Behav. Sci. 28, 97–101 (2011)
Agrawal, R., Srikant, R.: Mining sequential patterns. In: Proceedings of the 11th International Conference on Data Engineering, pp. 3–14 (1995)
Zaki, M.J.: SPADE, an efficient algorithm for mining frequent sequences. Mach. Learn. 42, 31–60 (2001)
Ayres, J., Gehrke, J., Yiu, T., Flannick, J.: Sequential pattern mining using a bitmap representation. In: Proceedings of the 8th ACM SIGKDD, pp. 429–435 (2002)
Pei, J., Han, J., Mortazavi-Asl, B., Pinto, H., Chen, Q., Dayal, U., Hsu, M.C.: PrefixSpan: mining sequential patterns by pattern-growth: the prefixspan approach. IEEE Trans. Knowl. Data Eng. 16(11), 1424–1440 (2004)
Han, J., Pei, J., Mortazavi-Asl, B., Chen, Q., Dayal, U., Hsu, M.C.: FreeSpan: frequent pattern-projected sequential pattern mining. In Proceedings of 2000 ACM SIGKDD, pp. 355–359 (2000)
Gouda, K., Hassaan, M., Zaki, M.J.: PRISM: a pimal-encoding approach for frequent sequence mining. J. Comput. Syst. Sci. 76(1), 88–102 (2010)
Abdullah, Z., Herawan, T., Noraziah, A., Deris, M.M.: Mining significant association rules from educational data using critical relative support approach. Procedia Soc. Behav. Sci. 28, 97–191 (2011)
Abdullah, Z., Herawan, T., Deris, M.M.: Detecting definite least association rule in medical database. LNEE 285, 127–134 (2014)
Herawan, T., Vitasari, P., Abdullah, Z.: Mining interesting association rules of students suffering study anxieties using SLP-growth algorithm. Int. J. Knowl. Syst. Sci. 3(2), 24–41 (2012)
Abdullah, Z., Herawan, T., Noraziah, A., Deris, M.M.: Detecting critical least association rules in medical databasess. Int. J. Mod. Phys.: Conf. Ser. 9, 464–479 (2012)
Herawan, T., Abdullah, Z.: CNAR-M: a model for mining critical negative association rules. In: Cai, Z. et al. (eds.) ISICA 2012, CCIS, vol. 316, pp. 170–179. Springer, Berlin (2012)
Abdullah, Z., Herawan, T. Noraziah, A., Deris, M.M., Abawajy, J.H..: IPMA: indirect patterns mining algorithm. In: Nguyen, N.T. et al. (eds.) ICCCI 2012, AMCCISCI, vol. 457, pp. 187–196. Springer, Berlin (2012)
Herawan, T., Vitasari, P., Abdullah, Z.: Mining interesting association rules of student suffering mathematics anxiety. In: Zain, J.M. et al. (eds.) ICSECS 2011, CCIS, vol. 188, II, pp. 495–508. Springer, Berlin (2011)
Abdullah, Z., Herawan, T., Deris, M.M.: Efficient and scalable model for mining critical least association rules. J. Chin. Inst. Eng. 35(4), 547–554 (2012)
Abdullah, Z., Herawan, T., Noraziah, A., Deris, M.M.: Extracting highly positive association rules from students’ enrollment data. Procedia Soc. Behav. Sci. 28, 107–111 (2011)
Abdullah, Z., Herawan, T., Deris, M.M.: An alternative measure for mining weighted least association rule and its framework. In: Zain, J.M. et al. (eds.) ICSECS 2011, CCIS, vol. 188, II, pp. 475–485. Springer, Berlin (2011)
Agrawal, R., Imieliński, T., Swami, A.: Mining association rules between sets of items in large DB. In: Proceedings of the 1993 ACM SIGMOD (SIGMOD 1993) pp. 207–216 (1993)
Brin, S., Motwani, R., Ullman, J.D., Tsur.S.: Dynamic itemset counting and implication rules for market basket data. In: Proceedings of the ACM SIGMOD (SIGMOD 1997), pp. 265–276 (1997)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Abdullah, Z., Adam, O., Herawan, T., Noraziah, A., Saman, M.Y.M., Hamdan, A.R. (2019). 2M-SELAR: A Model for Mining Sequential Least Association Rules. In: Abawajy, J., Othman, M., Ghazali, R., Deris, M., Mahdin, H., Herawan, T. (eds) Proceedings of the International Conference on Data Engineering 2015 (DaEng-2015) . Lecture Notes in Electrical Engineering, vol 520. Springer, Singapore. https://doi.org/10.1007/978-981-13-1799-6_10
Download citation
DOI: https://doi.org/10.1007/978-981-13-1799-6_10
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-13-1797-2
Online ISBN: 978-981-13-1799-6
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)