Nothing Special   »   [go: up one dir, main page]

Skip to main content

2M-SELAR: A Model for Mining Sequential Least Association Rules

  • Conference paper
  • First Online:
Proceedings of the International Conference on Data Engineering 2015 (DaEng-2015)

Abstract

Recently, mining least association rule from the sequential data becomes more important in certain domain areas such as education, healthcare, text mining, etc. due to its uniqueness and usefulness. However, discovering such rule is a great challenge because it involves with a set of least items which usually holds a very low in term of support. Therefore, in this paper propose a model for mining sequential least association rule (2M-SELAR) that embedded with SELAR algorithm, and Critical Relative Support (CRS) and Definite Factor (DF) measures. The experimental results reveal that 2M-SELAR can successfully generate the desired rule from the given datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large databases. In: Proceedings of the 20th International Conference on Very Large Data Bases, pp. 487–499 (1994)

    Google Scholar 

  2. Mannila, H., Toivonen, H., Verkamo, A.I.: Discovery of frequent episodes in event sequences. Data Min. Knowl. Disc. 1, 259–289 (1997)

    Article  Google Scholar 

  3. Park, J.S., Chen, M.S., Yu, P.S.: An effective hash-based algorithm for mining association rules. In: Proceedings of the ACM-SIGMOD (SIGMOD’95), pp. 175–186. ACM Press, New York (1995)

    Article  Google Scholar 

  4. Savasere, A., Omiecinski, E., Navathe, S.: An efficient algorithm for mining association rules in large databases. In: Proceedings of the 21st International Conference on Very Large Data Bases (VLDB’95), pp. 432–443. ACM Press, New York (1995)

    Google Scholar 

  5. Fayyad, U., Patesesky-Shapiro, G., Smyth, P., Uthurusamy, R.: Advances in Knowledge Discovery and Data Mining. MIT, Cambridge (1996)

    Google Scholar 

  6. Bayardo, R.J.: Efficiently mining long patterns from databases. In: Proceedings of the ACM-SIGMOD International Conference on Management of Data (SIGMOD’98), pp. 85–93. ACM Press, New York (1998)

    Google Scholar 

  7. Zaki, M.J. Hsiao, C.J.: CHARM: an efficient algorithm for closed itemset mining. In: Proceedings of the 2002 SIAM International Conference of Data Mining, pp. 457–473. SIAM, Philadelphia, PA (2002)

    Google Scholar 

  8. Agarwal, R., Aggarwal, C., Prasad, V.V.V.: A tree projection algorithm for generation of frequent itemsets. J. Parallel Distrib. Comput. 61, 350–371 (2001)

    Article  Google Scholar 

  9. Liu, B., Hsu, W., Ma, Y.: Mining association rules with multiple minimum support. In: Proceedings of the 5th ACM SIGKDD, pp. 337–341. ACM Press, New York (1999)

    Google Scholar 

  10. Abdullah, Z., Herawan, T., Deris, M.M.: Scalable model for mining critical least association rules. In Zhu, R. et al. (eds.) ICICA 2010, LNCS 6377, pp. 509–516. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  11. Cristabal, R., Sebastián, V., García, E.: Data mining in course management systems: Moodle case study and tutorial. Comput. Educ. pp. 368–384 (2008)

    Google Scholar 

  12. Ahmad, N., Abdullah, Z., Herawan, T., Deris, M.M.: Scalable technique to discover items support from Trie data structure. In: Liu, B. et al. (eds.) ICICA 2012, LNCS 7473, pp. 500–507 (2012)

    Google Scholar 

  13. Abdullah, Z., Herawan, T., Deris, M.M.: Detecting definite least association rule in medical database. LNEE 285, 127–134 (2013)

    Google Scholar 

  14. Abdullah, Z., Herawan, T., Noraziah, A., Deris, M.M.: Mining significant association rules from educational data using critical relative support approach. Procedia Soc. Behav. Sci. 28, 97–101 (2011)

    Article  Google Scholar 

  15. Agrawal, R., Srikant, R.: Mining sequential patterns. In: Proceedings of the 11th International Conference on Data Engineering, pp. 3–14 (1995)

    Google Scholar 

  16. Zaki, M.J.: SPADE, an efficient algorithm for mining frequent sequences. Mach. Learn. 42, 31–60 (2001)

    Article  Google Scholar 

  17. Ayres, J., Gehrke, J., Yiu, T., Flannick, J.: Sequential pattern mining using a bitmap representation. In: Proceedings of the 8th ACM SIGKDD, pp. 429–435 (2002)

    Google Scholar 

  18. Pei, J., Han, J., Mortazavi-Asl, B., Pinto, H., Chen, Q., Dayal, U., Hsu, M.C.: PrefixSpan: mining sequential patterns by pattern-growth: the prefixspan approach. IEEE Trans. Knowl. Data Eng. 16(11), 1424–1440 (2004)

    Article  Google Scholar 

  19. Han, J., Pei, J., Mortazavi-Asl, B., Chen, Q., Dayal, U., Hsu, M.C.: FreeSpan: frequent pattern-projected sequential pattern mining. In Proceedings of 2000 ACM SIGKDD, pp. 355–359 (2000)

    Google Scholar 

  20. Gouda, K., Hassaan, M., Zaki, M.J.: PRISM: a pimal-encoding approach for frequent sequence mining. J. Comput. Syst. Sci. 76(1), 88–102 (2010)

    Article  Google Scholar 

  21. Abdullah, Z., Herawan, T., Noraziah, A., Deris, M.M.: Mining significant association rules from educational data using critical relative support approach. Procedia Soc. Behav. Sci. 28, 97–191 (2011)

    Article  Google Scholar 

  22. Abdullah, Z., Herawan, T., Deris, M.M.: Detecting definite least association rule in medical database. LNEE 285, 127–134 (2014)

    Google Scholar 

  23. Herawan, T., Vitasari, P., Abdullah, Z.: Mining interesting association rules of students suffering study anxieties using SLP-growth algorithm. Int. J. Knowl. Syst. Sci. 3(2), 24–41 (2012)

    Article  Google Scholar 

  24. Abdullah, Z., Herawan, T., Noraziah, A., Deris, M.M.: Detecting critical least association rules in medical databasess. Int. J. Mod. Phys.: Conf. Ser. 9, 464–479 (2012)

    Google Scholar 

  25. Herawan, T., Abdullah, Z.: CNAR-M: a model for mining critical negative association rules. In: Cai, Z. et al. (eds.) ISICA 2012, CCIS, vol. 316, pp. 170–179. Springer, Berlin (2012)

    Google Scholar 

  26. Abdullah, Z., Herawan, T. Noraziah, A., Deris, M.M., Abawajy, J.H..: IPMA: indirect patterns mining algorithm. In: Nguyen, N.T. et al. (eds.) ICCCI 2012, AMCCISCI, vol. 457, pp. 187–196. Springer, Berlin (2012)

    Google Scholar 

  27. Herawan, T., Vitasari, P., Abdullah, Z.: Mining interesting association rules of student suffering mathematics anxiety. In: Zain, J.M. et al. (eds.) ICSECS 2011, CCIS, vol. 188, II, pp. 495–508. Springer, Berlin (2011)

    Chapter  Google Scholar 

  28. Abdullah, Z., Herawan, T., Deris, M.M.: Efficient and scalable model for mining critical least association rules. J. Chin. Inst. Eng. 35(4), 547–554 (2012)

    Article  Google Scholar 

  29. Abdullah, Z., Herawan, T., Noraziah, A., Deris, M.M.: Extracting highly positive association rules from students’ enrollment data. Procedia Soc. Behav. Sci. 28, 107–111 (2011)

    Article  Google Scholar 

  30. Abdullah, Z., Herawan, T., Deris, M.M.: An alternative measure for mining weighted least association rule and its framework. In: Zain, J.M. et al. (eds.) ICSECS 2011, CCIS, vol. 188, II, pp. 475–485. Springer, Berlin (2011)

    Chapter  Google Scholar 

  31. Agrawal, R., Imieliński, T., Swami, A.: Mining association rules between sets of items in large DB. In: Proceedings of the 1993 ACM SIGMOD (SIGMOD 1993) pp. 207–216 (1993)

    Google Scholar 

  32. Brin, S., Motwani, R., Ullman, J.D., Tsur.S.: Dynamic itemset counting and implication rules for market basket data. In: Proceedings of the ACM SIGMOD (SIGMOD 1997), pp. 265–276 (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zailani Abdullah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Abdullah, Z., Adam, O., Herawan, T., Noraziah, A., Saman, M.Y.M., Hamdan, A.R. (2019). 2M-SELAR: A Model for Mining Sequential Least Association Rules. In: Abawajy, J., Othman, M., Ghazali, R., Deris, M., Mahdin, H., Herawan, T. (eds) Proceedings of the International Conference on Data Engineering 2015 (DaEng-2015) . Lecture Notes in Electrical Engineering, vol 520. Springer, Singapore. https://doi.org/10.1007/978-981-13-1799-6_10

Download citation

Publish with us

Policies and ethics