Nothing Special   »   [go: up one dir, main page]

Skip to main content

Wavelet Entropy Analysis for Detecting Lying Using Event-Related Potentials

  • Conference paper
  • First Online:
Geo-Spatial Knowledge and Intelligence (GSKI 2017)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 848))

Included in the following conference series:

Abstract

This paper presents a method to identify lying automatically using EEG signals. The wavelet entropy of event-related potentials (ERP) carries information about the degree of order associated with a multi-frequency brain electrophysiological activity. We used wavelet entropy to analyze ERP during a lying task. Ten subjects were divided into guilty and innocent groups randomly. They were instructed to make a truthful or deceptive responses on the stimuli. EEG recordings on Pz channel were collected and the features of wavelet entropy were extracted. Statistical result reveals that there is significantly lower wavelet entropy value for the guilty group than that for the control group. We concluded that guilty subjects showed much high order degree of the brain state than normal persons after about 300 ms after stimulus onset. Hence, wavelet entropy is an effective and reliable approach to detect deception, and can help us to understand cognition processing deeply for lying behaviors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Spence, S.A., Farrow, T.F., Herford, A.E., Wilkinson, I.D., Zheng, Y., Woodruff, P.W.: Behavioural and functional anatomical correlates of deception in humans. NeuroReport 12, 2849–2853 (2001). https://doi.org/10.1097/00001756-200109170-00019

    Article  Google Scholar 

  2. Rosenfeld, J.P., Ellwanger, J.W., Nolan, K., et al.: P300 scalp amplitude distribution as an index of deception in a simulated cognitive deficit model. Int. J. Psychophysiol. Off. J. Int. Organ. Psychophysiol. 33, 3–19 (1999). https://doi.org/10.1016/S0167-8760(99)00021-5

    Article  Google Scholar 

  3. Allen, J.J.B., Iacono, W.G.: A comparison of methods for the analysis of event-related potentials in deception detection. Psychophysiology 34, 234–240 (1997). https://doi.org/10.1111/j.1469-8986.1997.tb02137.x

    Article  Google Scholar 

  4. Abdulmajeed, A., Alexia, Z., Marco, F., et al.: A new method for detecting deception in event related potentials using individual-specific weight templates. BMC Neurosci. 14, 34 (2013). https://doi.org/10.1186/1471-2202-14-S1-P34

    Article  Google Scholar 

  5. Johnson, M.M., Rosenfeld, J.P.: Oddball-evoked P300-based method of deception detection in the laboratory. II: utilization of non-selective activation of relevant knowledge. Int. J. Psychophysiol. Off. J. Int. Organ. Psychophysiol. 12, 289–306 (1992). https://doi.org/10.1016/0167-8760(92)90067-L

    Article  Google Scholar 

  6. Elaad, E.: Effects of context and state of guilt on the detection of concealed crime information. Int. J. Psychophysiol. 71, 225–234 (2009). https://doi.org/10.1016/j.ijpsycho.2008.10.001

    Article  Google Scholar 

  7. Verschuere, B., Spruyt, A., Meijer, E.H., et al.: The ease of lying. Conscious. Cognit. 20, 908–911 (2011). https://doi.org/10.1016/j.concog.2010.10.023

    Article  Google Scholar 

  8. Sun, D., Lee, T.M.C., Chan, C.C.H.: Unfolding the spatial and temporal neural processing of lying about face familiarity. Cereb. Cortex 25, 927–936 (2015). https://doi.org/10.1093/cercor/bht284

    Article  Google Scholar 

  9. Quiroga, R.Q., Rosso, O.A., Başar, E., et al.: Wavelet entropy in event-related potentials: a new method shows ordering of EEG oscillations. Biol. Cybern. 84, 291–299 (2001). https://doi.org/10.1007/s004220000212

    Article  MATH  Google Scholar 

  10. Abásolo, D., Hornero, R., Espino, P., et al.: Entropy analysis of the EEG background activity in Alzheimer’s disease patients. Physiol. Meas. 27, 241–253 (2006). https://doi.org/10.1088/0967-3334/27/3/003

    Article  Google Scholar 

  11. Kantz, H., Schreiber, T.: Nonlinear Time Series Analysis. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  12. Shannon, C.E.: A mathematical theory of communication. ACM SIGMOBILE Mob. Comput. Commun. Rev. 5, 3–55 (2001)

    Article  Google Scholar 

  13. Inouye, T., Shinosaki, K., Sakamoto, H., et al.: Quantification of EEG irregularity by use of the entropy of the power spectrum. Electroencephalogr. Clin. Neurophysiol. 79, 204–210 (1991). https://doi.org/10.1016/0013-4694(91)90138-T

    Article  Google Scholar 

  14. Rosso, O.A., Yordanova, J., Kolev, V., et al.: Time-frequency analysis of sensorial brain activity. Suppl. Clin. Neurophysiol. 54, 443–450 (2002). https://doi.org/10.1016/s1567-424X(09)70485-4

    Article  Google Scholar 

  15. Phan, K.L., Magalhaes, A., Ziemlewicz, T.J., et al.: Neural correlates of telling lies: a functional magnetic resonance imaging study at 4 Tesla. Acad. Radiol. 12, 164–172 (2005). https://doi.org/10.1016/j.acra.2004.11.023

    Article  Google Scholar 

  16. Gao, J.F., Wang, Z., Yang, Y., et al.: A novel approach for lie detection based on F-score and extreme learning machine. PLoS ONE 8, e64704 (2013). https://doi.org/10.1371/journal.pone.0064704

    Article  Google Scholar 

Download references

Acknowledgment

The work was supported by the National Nature Science Foundation of China (No. 81271659 and 61773408), the China Postdoctoral Science Foundation (No. 2014M552346).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junfeng Gao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xiong, Y., Gao, J., Chen, R. (2018). Wavelet Entropy Analysis for Detecting Lying Using Event-Related Potentials. In: Yuan, H., Geng, J., Liu, C., Bian, F., Surapunt, T. (eds) Geo-Spatial Knowledge and Intelligence. GSKI 2017. Communications in Computer and Information Science, vol 848. Springer, Singapore. https://doi.org/10.1007/978-981-13-0893-2_46

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-0893-2_46

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-0892-5

  • Online ISBN: 978-981-13-0893-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics