Nothing Special   »   [go: up one dir, main page]

Skip to main content

Fast and Flexible Initial Uplink Synchronization for Long-Term Evolution

  • Chapter
  • First Online:
Emerging Wireless Communication and Network Technologies

Abstract

Orthogonal frequency-division multiple access has been widely adopted by the modern wireless networking standards. These use initial uplink synchronization (IUS) process to detect and uplink-synchronize with new user equipments (UEs) (3rd Generation Partnership Project; technical specification group radio access network; evolved universal terrestrial radio access (E-UTRA); physical channels and modulation (release 10), (2011) [1]). IUS is a random access process where a UE intending to start communication transmits a code during an “IUS opportunity”. The code is chosen uniformly at random from a predefined codebook. The eNodeB uses the received signal to detect the codes, and estimate the uplink channel parameters associated with each detected code. This detection and estimation problem is known to be quite challenging, particularly when the number of UEs transmitting during an IUS opportunity is not small. We discuss some recent sparse signal processing methods to address this problem in the context of long-term evolution (LTE) standards. This research does not only give some new directions to solve the detection and estimation problem but also provides guidelines for designing the codebook. In addition, the key ideas are applicable to other OFDMA systems.

Research is supported by the Australian Research Council.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Because the practical values of \(|\epsilon _{\ell }|\le 0.5\).

References

  1. 3rd Generation Partnership Project; technical specification group radio access network; evolved universal terrestrial radio access (E-UTRA); physical channels and modulation (release 10) (2011)

    Google Scholar 

  2. 3GPP-TS-36.101: User equipment (UE) radio transmission and reception. 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA) (2012)

    Google Scholar 

  3. Bao, P., Guan, Q., Guan, M.: A multiuser detection algorithm in the uplink SC-FDMA system for green communication network. IEEE Access 4, 5982–5989 (2016). https://doi.org/10.1109/ACCESS.2016.2556279

  4. Barbarossa, S., Pompili, M., Giannakis, G.: Channel-independent synchronization of orthogonal frequency division multiple access systems. Selected Areas in Communications, IEEE Journal on 20(2), 474–486 (2002)

    Google Scholar 

  5. Beyme, S., Leung, C.: Efficient computation of DFT of Zadoff-Chu sequences. Electronics Letters 45(9), 461–463 (2009). https://doi.org/10.1049/el.2009.3330

  6. Blake, A., Zisserman, A.: Visual Reconstruction. MIT Press, Cambridge, MA (1987)

    Google Scholar 

  7. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge Univ. Press, Cambridge, U.K. (2004)

    Google Scholar 

  8. Candés, E.J., Romberg, J., Tao, T.: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory 52, 489–509 (2006)

    Google Scholar 

  9. Candés, E.J., Wakin, M.B.: An introduction to compressive sampling. IEEE Signal Processing Magazine 25, 21–30 (2008)

    Google Scholar 

  10. Chen, S.S., Donoho, D.L., Saunders, M.A.: Atomic decomposition by basis pursuit. SIAM Journal on Scientific Computing 20, 33–61 (1999)

    Google Scholar 

  11. Chu, D.: Polyphase codes with good periodic correlation properties (corresp.). Information Theory, IEEE Transactions on 18(4), 531–532 (1972). https://doi.org/10.1109/TIT.1972.1054840

  12. Coleman, T., Li, Y.: An interior trust region approach for nonlinear minimization subject to bounds. SIAM Journal on Optimization 6(2), 418–445 (1996)

    Google Scholar 

  13. Frank, R., Zadoff, S.: Phase shift pulse codes with good periodic correlation properties (corresp.). Information Theory, IRE Transactions on 8(6), 381–382 (1962). https://doi.org/10.1109/TIT.1962.1057786

  14. Fu, X., Li, Y., Minn, H.: A new ranging method for OFDMA systems. Wireless Communications, IEEE Transactions on 6(2), 659–669 (2007)

    Google Scholar 

  15. Gorodnitsky, I., Rao, B.: Sparse signal reconstruction from limited data using FOCUSS: a re-weighted minimum norm algorithm. IEEE Transactions on Signal Processing 45(3), 600–616 (1997)

    Google Scholar 

  16. Hyder, M., Mahata, K.: Direction-of-arrival estimation using a mixed \(\ell _{2,0}\) norm approximation. IEEE Transactions on Signal Processing 58(9), 4646–4655 (2010)

    Google Scholar 

  17. Hyder, M., Mahata, K.: Zadoff-Chu sequence design for random access initial uplink synchronization in LTE-like systems. IEEE Transactions on Wireless Communications 16(1), 503–511 (2017). https://doi.org/10.1109/TWC.2016.2625319

  18. Hyder, M.M., Mahata, K.: An improved smoothed \(\ell ^{0}\) approximation algorithm for sparse representation. IEEE transactions on Signal Processing 58(4), 2194–2205 (2010)

    Google Scholar 

  19. Hyder, M.M., Mahata, K.: A sparse recovery method for initial uplink synchronization in OFDMA systems. IEEE Transactions on Communications 64(1), 377–386 (2016). https://doi.org/10.1109/TCOMM.2015.2497232

  20. IEEE standard for local and metropolitan area networks part 16: Air interface for broadband wireless access systems. IEEE Std 802.16-2009 (Revision of IEEE Std 802.16-2004) pp. 1–2080 (2009)

    Google Scholar 

  21. Lee, C.C., Krinock, J., Singh, M., Paff, M.: Comments on OFDMA ranging scheme described in IEEE 802.16ab-01/01r1. IEEE 802.16abc-01/24 (2001)

    Google Scholar 

  22. Lee, D.H.: OFDMA uplink ranging for IEEE 802.16e using modified generalized chirp-like polyphase sequences. In: Internet, 2005. The First IEEE and IFIP International Conference in Central Asia on (2005)

    Google Scholar 

  23. Lin, C.L., Su, S.L.: A robust ranging detection with MAI cancellation for OFDMA systems. In: Advanced Communication Technology (ICACT), 2011 13th International Conference on, pp. 937–941 (2011)

    Google Scholar 

  24. Popovic, B.: Efficient DFT of Zadoff-Chu sequences. Electronics Letters 46(7), 502–503 (2010). https://doi.org/10.1049/el.2010.3510

  25. Ruan, M., Reed, M., Shi, Z.: Successive multiuser detection and interference cancelation for contention based OFDMA ranging channel. Wireless Communications, IEEE Transactions on 9(2), 481–487 (2010)

    Google Scholar 

  26. Sanguinetti, L., Morelli, M.: An initial ranging scheme for the IEEE 802.16 OFDMA uplink. Wireless Communications, IEEE Transactions on 11(9), 3204–3215 (2012)

    Google Scholar 

  27. Sanguinetti, L., Morelli, M., Marchetti, L.: A random access algorithm for LTE systems. Transactions on Emerging Telecommunications Technologies 24(1), 49–58 (2013). https://doi.org/10.1002/ett.2575

  28. Wainwright, M.: Sharp thresholds for high-dimensional and noisy sparsity recovery using \(\ell _{1}\) -constrained quadratic programming (LASSO). Information Theory, IEEE Transactions on 55(5), 2183–2202 (2009)

    Google Scholar 

  29. Wang, Q., Ren, G.: Iterative maximum likelihood detection for initial ranging process in 802.16 OFDMA systems. Wireless Communications, IEEE Transactions on 14(5), 2778–2787 (2015)

    Google Scholar 

  30. Wang, Q., Ren, G., Wu, J.: A multiuser detection algorithm for random access procedure with the presence of carrier frequency offsets in LTE systems. IEEE Transactions on Communications 63(9), 3299–3312 (2015)

    Google Scholar 

  31. Wang, Q., Ren, G., Wu, J.: A centralized preamble detection-based random access scheme for LTE CoMP transmission. IEEE Transactions on Vehicular Technology 65(7), 5200–5211 (2016)

    Google Scholar 

  32. White Paper, E.: More than \(50\) billion connected devices. Ericsson Tech Report 284 23-3149 Uen (2011)

    Google Scholar 

  33. Zhou, Y., Zhang, Z., Zhou, X.: OFDMA initial ranging for IEEE 802.16e based on time-domain and frequency-domain approaches. In: Communication Technology, 2006. ICCT ’06. International Conference on, pp. 1–5 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Mashud Hyder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hyder, M.M., Mahata, K. (2018). Fast and Flexible Initial Uplink Synchronization for Long-Term Evolution. In: Arya, K., Bhadoria, R., Chaudhari, N. (eds) Emerging Wireless Communication and Network Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-13-0396-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-0396-8_11

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-0395-1

  • Online ISBN: 978-981-13-0396-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics