Nothing Special   »   [go: up one dir, main page]

Skip to main content

Texture and Color Visual Features Based CBIR Using 2D DT-CWT and Histograms

  • Conference paper
  • First Online:
Mathematics and Computing (ICMC 2018)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 834))

Included in the following conference series:

Abstract

In content based image retrieval (CBIR) process, every image has been represented in a compact set of local visual features i.e. color, texture, and/or shape of images. This set of local visual features is known as feature vector. In the CBIR process, feature vectors of images have been used to represent or to identify similar images in adequate way. As a result, feature vector construction has always been considered as an important issue since it must reflect proper image semantics using minimal amount of data. The proposed CBIR scheme is based on the combination of color and texture features. In this work initially, we have converted the given RGB image into HSV color image. Subsequently, we have considered H (hue), S (saturation), and V (intensity) components for extraction of visual image features. The texture features have been extracted from the V component of the image using 2D dual-tree complex wavelet transform (2D DT-CWT) where it analyzes the textural patterns in six different directions i.e. ±15\(^{\circ }\), ±45\(^{\circ }\), and ±75\(^{\circ }\). At the same time, we have computed the probability histograms of H and S components of the image respectively and subsequently those are divided into non-uniform bins based on cumulative probability for extraction of color based features. So, in this work both the color and texture features have been extracted simultaneously. Finally, the obtained features have been concatenated to attain the final feature vector and same is considered in image retrieval process. We have tested the novelty and performance of the proposed work in two Corel, two objects, and, a texture image datasets. The experimental results reveal the acceptable retrieval performances for different types of datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gudivada, V.N., Raghavan, V.V.: Design and evaluation of algorithms for image retrieval by spatial similarity. ACM Trans. Inf. Syst. (TOIS) 13(2), 115–144 (1995)

    Article  Google Scholar 

  2. Liapis, S., Tziritas, G.: Color and texture image retrieval using chromaticity histograms and wavelet frames. IEEE Trans. Multimed. 6(5), 676–686 (2004)

    Article  Google Scholar 

  3. Guérin, C., Rigaud, C., Bertet, K., Revel, A.: An ontology-based framework for the automated analysis and interpretation of comic books images. Inf. Sci. 378, 109–130 (2017)

    Article  Google Scholar 

  4. Chun, Y.D., Kim, N.C., Jang, I.H.: Content-based image retrieval using multiresolution color and texture features. IEEE Trans. Multimed. 10(6), 1073–1084 (2008)

    Article  Google Scholar 

  5. Feng, S., Xu, D., Yang, X.: Attention-driven salient edge(s) and region(s) extraction with application to CBIR. Signal Process. 90(1), 1–15 (2010)

    Article  Google Scholar 

  6. Lin, C.-H., Chen, R.-T., Chan, Y.-K.: A smart content-based image retrieval system based on color and texture feature. Image Vis. Comput. 27(6), 658–665 (2009)

    Article  Google Scholar 

  7. Yue, J., Li, Z., Liu, L., Fu, Z.: Content-based image retrieval using color and texture fused features. Math. Comput. Model. 54(3), 1121–1127 (2011)

    Article  Google Scholar 

  8. Youssef, S.M.: ICTEDCT-CBIR: integrating curvelet transform with enhanced dominant colors extraction and texture analysis for efficient content-based image retrieval. Comput. Electr. Eng. 38(5), 1358–1376 (2012)

    Article  MathSciNet  Google Scholar 

  9. Subrahmanyam, M., Wu, Q.M.J., Maheshwari, R.P., Balasubramanian, R.: Modified color motif co-occurrence matrix for image indexing and retrieval. Comput. Electr. Eng. 39(3), 762–774 (2013)

    Article  Google Scholar 

  10. ElAlami, M.E.: A new matching strategy for content based image retrieval system. Appl. Soft Comput. 14, 407–418 (2014)

    Article  Google Scholar 

  11. Guo, J.-M., Prasetyo, H.: Content-based image retrieval using features extracted from halftoning-based block truncation coding. IEEE Trans. Image Process. 24(3), 1010–1024 (2015)

    Article  MathSciNet  Google Scholar 

  12. Varish, N., Pradhan, J., Pal, A.K.: Image retrieval based on non-uniform bins of color histogram and dual tree complex wavelet transform. Multimed. Tools Appl. 76(14), 15885–15921 (2017)

    Article  Google Scholar 

  13. Cui, C., Lin, P., Nie, X., Yin, Y., Zhu, Q.: Hybrid textual-visual relevance learning for content-based image retrieval. J. Vis. Commun. Image Represent. 48, 367–374 (2017)

    Article  Google Scholar 

  14. Pradhan, J., Pal, A.K., Banka, H.: A prominent object region detection based approach for CBIR application. In: 2016 Fourth International Conference on Parallel, Distributed and Grid Computing (PDGC), pp. 447–452. IEEE (2016)

    Google Scholar 

  15. Nene, S.A., Nayar, S.K., Murase, H., et al.: Columbia object image library (COIL-20) (1996)

    Google Scholar 

  16. tropical-fruits-db-1024x768.tar.gz. http://www.ic.unicamp.br/~rocha/pub/downloads/tropical-fruits-DB-1024x768.tar.gz/. Accessed 18 Aug 2017

  17. site www, vision & image: lagis-vi.univ-lille1.fr (2017). http://lagis-vi.univlille1.fr/datasets/outex.html. Accessed 18 Aug 2017

  18. Zeng, S., Huang, R., Wang, H., Kang, Z.: Image retrieval using spatiograms of colors quantized by Gaussian mixture models. Neurocomputing 171, 673–684 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jitesh Pradhan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pradhan, J., Kumar, S., Pal, A.K., Banka, H. (2018). Texture and Color Visual Features Based CBIR Using 2D DT-CWT and Histograms. In: Ghosh, D., Giri, D., Mohapatra, R., Savas, E., Sakurai, K., Singh, L. (eds) Mathematics and Computing. ICMC 2018. Communications in Computer and Information Science, vol 834. Springer, Singapore. https://doi.org/10.1007/978-981-13-0023-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-0023-3_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-0022-6

  • Online ISBN: 978-981-13-0023-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics