Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Survey on Automatic Image Captioning

  • Conference paper
  • First Online:
Mathematics and Computing (ICMC 2018)

Abstract

Automatic image captioning is the process of providing natural language captions for images automatically. Considering the huge number of images available in recent time, automatic image captioning is very beneficial in managing huge image datasets by providing appropriate captions. It also finds application in content based image retrieval. This field includes other image processing areas such as segmentation, feature extraction, template matching and image classification. It also includes the field of natural language processing. Scene analysis is a prominent step in automatic image captioning which is garnering the attention of many researchers. The better the scene analysis the better is the image understanding which further leads to generate better image captions. The survey presents various techniques used by researchers for scene analysis performed on different image datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sumathi, T., Hemalatha, M.: A combined hierarchical model for automatic image annotation and retrieval. In: International Conference on Advanced Computing (2011)

    Google Scholar 

  2. Yu, M.T., Sein, M.M.: Automatic image captioning system using integration of N-cut and color-based segmentation method. In: Society of Instrument and Control Engineers Annual Conference (2011)

    Google Scholar 

  3. Ushiku, Y., Harada, T., Kuniyoshi, Y.: Automatic sentence generation from images. In: ACM Multimedia (2011)

    Google Scholar 

  4. Federico, M., Furini, M.: Enhancing learning accessibility through fully automatic captioning. In: International Cross-Disciplinary Conference on Web Accessibility (2011)

    Google Scholar 

  5. Feng, Y., Lapata, M.: Automatic caption generation for news images. IEEE Trans. Pattern Anal. Mach. Intell. 35(4), 797–811 (2013)

    Article  Google Scholar 

  6. Xi, S.M., Im Cho, Y.: Image caption automatic generation method based on weighted feature. In: International Conference on Control, Automation and Systems (2013)

    Google Scholar 

  7. Horiuchi, S., Moriguchi, H., Shengbo, X., Honiden, S.: Automatic image description by using word-level features. In: International Conference on Internet Multimedia Computing and Service (2013)

    Google Scholar 

  8. Ramnath, K., Vanderwende, L., El-Saban, M., Sinha, S.N., Kannan, A., Hassan, N., Galley, M.: AutoCaption: automatic caption generation for personal photos. In: IEEE Winter Conference on Applications of Computer Vision (2014)

    Google Scholar 

  9. Sivakrishna Reddy, A., Monolisa, N., Nathiya, M., Anjugam, D.: A combined hierarchical model for automatic image annotation and retrieval. In: International Conference on Innovations in Information Embedded and Communication Systems (2015)

    Google Scholar 

  10. Shivdikar, K., Kak, A., Marwah, K.: Automatic image annotation using a hybrid engine. In: IEEE India Conference (2015)

    Google Scholar 

  11. Mathews, A.: Captioning images using different styles. In: ACM Multimedia Conference (2015)

    Google Scholar 

  12. Mathews, A., Xie, L., He, X.: Choosing basic-level concept names using visual and language context. In: IEEE Winter Conference on Applications of Computer Vision (2015)

    Google Scholar 

  13. Plummer, B.A., Wang, L., Cervantes, C.M., Caicedo, J.C., Hockenmaier, J., Lazebnik, S.: Flickr30k entities: collecting region-to-phrase correspondences for richer image-to-sentence models. In: International Conference on Computer Vision (2015)

    Google Scholar 

  14. Vijay, K., Ramya, D.: Generation of caption selection for news images using stemming algorithm. In: International Conference on Computation of Power, Energy, Information and Communication (2015)

    Google Scholar 

  15. Shahaf, D., Horvitz, E., Mankoff, R.: Inside jokes: identifying humorous cartoon captions. In: International Conference on Knowledge Discovery and Data Mining (2015)

    Google Scholar 

  16. Li, X., Lan, W., Dong, J., Liu, H.: Adding Chinese captions to images. In: International Conference in Multimedia Retrieval (2016)

    Google Scholar 

  17. Jin, J., Nakayama, H.: Annotation order matters: recurrent image annotator for arbitrary length image tagging. In: International Conference on Pattern Recognition (2016)

    Google Scholar 

  18. Shi, Z., Zou, Z.: Can a machine generate humanlike language descriptions for a remote sensing image? IEEE Trans. Geosci. Remote Sens. 55(6), 3623–3634 (2016)

    Article  Google Scholar 

  19. Shetty, R., Tavakoli, H.R., Laaksonen, J.: Exploiting scene context for image captioning. In: Vision and Language Integration Meets Multimedia Fusion (2016)

    Google Scholar 

  20. Li, X., Song, X., Herranz, L., Zhu, Y., Jiang, S.: Image captioning with both object and scene information. In: ACM Multimedia (2016)

    Google Scholar 

  21. Wang, C., Yang, H., Bartz, C., Meinel, C.: Image captioning with deep bidirectional LSTMs. In: ACM Multimedia (2016)

    Google Scholar 

  22. Liu, C., Wang, C., Sun, F., Rui, Y.: Image2Text: a multimodal caption generator. In: ACM Multimedia (2016)

    Google Scholar 

  23. Blandfort, P., Karayil, T., Borth, D., Dengel, A.: Introducing concept and syntax transition networks for image captioning. In: International Conference on Multimedia Retrieval (2016)

    Google Scholar 

  24. Tariq, A., Foroosh, H.: A context-driven extractive framework for generating realistic image descriptions. IEEE Trans. Image Process. 26(2), 619–631 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gargi Srivastava .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Srivastava, G., Srivastava, R. (2018). A Survey on Automatic Image Captioning. In: Ghosh, D., Giri, D., Mohapatra, R., Savas, E., Sakurai, K., Singh, L. (eds) Mathematics and Computing. ICMC 2018. Communications in Computer and Information Science, vol 834. Springer, Singapore. https://doi.org/10.1007/978-981-13-0023-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-0023-3_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-0022-6

  • Online ISBN: 978-981-13-0023-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics