Nothing Special   »   [go: up one dir, main page]

Skip to main content

Dynamic Class Learning Approach for Smart CBIR

  • Conference paper
  • First Online:
Computer Vision, Pattern Recognition, Image Processing, and Graphics (NCVPRIPG 2017)

Abstract

Smart Content Based Image Retrieval (CBIR) helps to simultaneously localize and recognize all object(s) present in a scene, for image retrieval task. The major drawbacks in such kind of system are: (a) overhead for addition of new class is high - addition of new class requires manual annotation of large number of samples and retraining of an entire object model; and (b) use of handcrafted features for recognition and localization task, which limits its performance. In this era of data proliferation where it is easy to discover new object categories and hard to label all of them i.e. less amount of labeled samples for training which raises the above mentioned drawbacks. In this work, we propose an approach which cuts down the overhead of labelling the data and re-training on an entire module to learn new classes. The major components in proposed framework are: (a) selection of an appropriate pre-trained deep model for learning a new class; and (b) learning new class by utilizing selected deep model with less supervision (i.e. with the least amount of labeled data) using a concept of triplet learning. To show the effectiveness of the proposed technique of new class learning, we have performed an evaluation on CIFAR-10, PASCAL VOC2007 and Imagenet datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Agostinelli, F., Hoffman, M., Sadowski, P., Baldi, P.: Learning activation functions to improve deep neural networks. arXiv preprint arXiv:1412.6830 (2014)

  2. Boykov, Y., Funka-Lea, G.: Graph cuts and efficient nd image segmentation. Int. J. Comput. Vis. 70(2), 109–131 (2006)

    Article  Google Scholar 

  3. Chatfield, K., Simonyan, K., Vedaldi, A., Zisserman, A.: Return of the devil in the details: delving deep into convolutional nets. arXiv preprint arXiv:1405.3531 (2014)

  4. Chen, Q., Song, Z., Dong, J., Huang, Z., Hua, Y., Yan, S.: Contextualizing object detection and classification. IEEE Trans. Pattern Anal. Mach. Intell. 37(1), 13–27 (2015)

    Article  Google Scholar 

  5. Deselaers, T., Keysers, D., Ney, H.: Features for image retrieval: an experimental comparison. Inf. Retrieval 11(2), 77–107 (2008)

    Article  Google Scholar 

  6. Dwivedi, G., Das, S., Rakshit, S., Vora, M., Samanta, S.: SLAR (simultaneous localization and recognition) framework for smart CBIR. In: Kundu, M.K., Mitra, S., Mazumdar, D., Pal, S.K. (eds.) PerMIn 2012. LNCS, vol. 7143, pp. 277–287. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-27387-2_35

    Chapter  Google Scholar 

  7. Everingham, M., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The pascal visual object classes (VOC) challenge. Int. J. Comput. Vis. 88(2), 303–338 (2010)

    Article  Google Scholar 

  8. Graham, B.: Fractional max-pooling. arXiv preprint arXiv:1412.6071 (2014)

  9. Gupta, N., Das, S., Chakraborti, S.: Revealing what to extract from where, for object-centric content based image retrieval (CBIR). In: Proceedings of the 2014 Indian Conference on Computer Vision Graphics and Image Processing, p. 57. ACM (2014)

    Google Scholar 

  10. He, K., Zhang, X., Ren, S., Sun, J.: Spatial pyramid pooling in deep convolutional networks for visual recognition. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8691, pp. 346–361. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10578-9_23

    Chapter  Google Scholar 

  11. Iandola, F.N., Han, S., Moskewicz, M.W., Ashraf, K., Dally, W.J., Keutzer, K.: Squeezenet: AlexNet-level accuracy with 50x fewer parameters and \(<\)0.5 MB model size. arXiv preprint arXiv:1602.07360 (2016)

  12. Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images (2009)

    Google Scholar 

  13. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  14. Liang, M., Hu, X.: Recurrent convolutional neural network for object recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3367–3375 (2015)

    Google Scholar 

  15. Lin, C.-H., Chen, R.-T., Chan, Y.-K.: A smart content-based image retrieval system based on color and texture feature. Image Vis. Comput. 27(6), 658–665 (2009)

    Article  Google Scholar 

  16. Liu, Y., Zhang, D., Lu, G., Ma, W.-Y.: A survey of content-based image retrieval with high-level semantics. Pattern Recogn. 40(1), 262–282 (2007)

    Article  Google Scholar 

  17. Mishkin, D., Matas, J.: All you need is a good init. arXiv preprint arXiv:1511.06422 (2015)

  18. Oquab, M., Bottou, L., Laptev, I., Sivic, J.: Learning and transferring mid-level image representations using convolutional neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1717–1724 (2014)

    Google Scholar 

  19. Rahman, M.M., Antani, S.K., Thoma, G.R.: A query expansion framework in image retrieval domain based on local and global analysis. Inf. Process. Manage. 47(5), 676–691 (2011)

    Article  Google Scholar 

  20. Razavian, A.S., Azizpour, H., Sullivan, J., Carlsson, S.: CNN features off-the-shelf: an astounding baseline for recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition workshops, pp. 806–813 (2014)

    Google Scholar 

  21. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  22. Snoek, J., Rippel, O., Swersky, K., Kiros, R., Satish, N., Sundaram, N., Patwary, M., Prabhat, M., Adams, R.: Scalable Bayesian optimization using deep neural networks. In: International Conference on Machine Learning, pp. 2171–2180 (2015)

    Google Scholar 

  23. Springenberg, J.T., Dosovitskiy, A., Brox, T., Riedmiller, M.: Striving for simplicity: the all convolutional net. arXiv preprint arXiv:1412.6806 (2014)

  24. Srivastava, R.K., Greff, K., Schmidhuber, J.: Training very deep networks. In: Advances in Neural Information Processing Systems, pp. 2377–2385 (2015)

    Google Scholar 

  25. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)

    Google Scholar 

  26. Wan, J., Wang, D., Hoi, S.C.H., Wu, P., Zhu, J., Zhang, Y., Li, J.: Deep learning for content-based image retrieval: a comprehensive study. In: Proceedings of the 22nd ACM International Conference on Multimedia, pp. 157–166. ACM (2014)

    Google Scholar 

  27. Wang, J., Song, Y., Leung, T., Rosenberg, C., Wang, J., Philbin, J., Chen, B., Wu, Y.: Learning fine-grained image similarity with deep ranking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1386–1393 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Girraj Pahariya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pahariya, G., Ravindran, B., Das, S. (2018). Dynamic Class Learning Approach for Smart CBIR. In: Rameshan, R., Arora, C., Dutta Roy, S. (eds) Computer Vision, Pattern Recognition, Image Processing, and Graphics. NCVPRIPG 2017. Communications in Computer and Information Science, vol 841. Springer, Singapore. https://doi.org/10.1007/978-981-13-0020-2_29

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-0020-2_29

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-0019-6

  • Online ISBN: 978-981-13-0020-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics