Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Hybrid TWDM-RoF Transmission System Based on a Sub-Central Station

  • Conference paper
  • First Online:
Communications, Signal Processing, and Systems (CSPS 2019)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 571))

  • 96 Accesses

Abstract

In this paper, a full-duplex time- and wavelength-division multiplexing -radio-over-fiber (TWDM-RoF) system which can support a hybrid transmission of wired and wireless data is proposed based on an additional sub-central station (SCS). For the downlink, the TWDM technology is employed to transmitted wired and wireless services from a central station (CS) to a SCS with baseband data formats. For the uplink, one upstream optical carrier can simultaneously support both wired and wireless signals to achieve upstream transmissions. Better system compatibility, wavelength utilization and dispersion tolerance for bidirectional transmission links can be achieved in the proposed system. Finally, a demonstrated system with one 10-Gbps wired signal and two 2.5-Gbps wireless signals carried by a 28-GHz radio frequency (RF) signal is established. We validate the feasibility of this system based on the results of the bit error rate (BER) curves for both downlink and uplink.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 629.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 799.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Soldani D, Manzalini A (2015) Horizon 2020 and beyond: on the 5G operating system for a true digital society. IEEE Veh Technol Mag 10:32–42

    Article  Google Scholar 

  2. Alliance N (2015) 5G white paper. Next generation mobile networks, white paper, pp 1–125

    Google Scholar 

  3. Li R, Zhao Z, Zhou X et al (2017) Intelligent 5G: when cellular networks meet artificial intelligence. IEEE Wirel Commun 24(5):175–183

    Article  Google Scholar 

  4. Chen H, Li Y, Bose SK, Shao W, Xiang L, Ma Y, Shen G (2016) Cost-minimized design for TWDM-PON-based 5G mobile backhaul networks. J Opt Commun Netw 8:B1–B11

    Article  Google Scholar 

  5. Sauer M, Kobyakov A, George J (2007) Radio over fiber for picocellular network architectures. J Lightwave Technol 25:3301–3320

    Article  Google Scholar 

  6. Ying C, Lu H, Li C, Chu C, Lu T, Peng P (2015) A bidirectional hybrid lightwave transport system based on fiber-IVLLC and fiber-VLLC convergences. IEEE Photon J 7:1–11

    Google Scholar 

  7. Mahmood NH, Lauridsen M, Berardinelli G et al (2016) Radio resource management techniques for eMBB and mMTC services in 5G dense small cell scenarios. In: Vehicular technology conference, Montreal, Canada, pp 1–5

    Google Scholar 

  8. Mitchell JE (2014) Integrated wireless backhaul over optical access networks. J Lightwave Technol 32:3373–3382

    Article  Google Scholar 

  9. Luo Y, Zhou X, Effenberger F, Yan X, Peng G, Qian Y, Ma Y (2013) Time- and wavelength-division multiplexed passive optical network (TWDM-PON) for next-generation PON stage 2 (NG-PON2). J Lightwave Technol 31(4):587–593

    Article  Google Scholar 

  10. Nesset D (2015) NG-PON2 technology and standards. J Lightwave Technol 33:1136–1143

    Article  Google Scholar 

  11. Wey JS, Nesset D, Valvo M, Grobe K, Roberts H, Luo Y, Smith J (2016) Physical layer aspects of NG-PON2 standards—part 1: optical link design. J Lightwave Technol 8:33–42

    Google Scholar 

Download references

Acknowledgements

This work is supported in part by the China Postdoctoral Science Foundation (2019M651095), the Fundamental Research Funds for the Central Universities under Grant 3132019210 and Grant 3132019220.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anliang Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, A., Wei, H., Na, Z., Yin, H. (2020). A Hybrid TWDM-RoF Transmission System Based on a Sub-Central Station. In: Liang, Q., Wang, W., Liu, X., Na, Z., Jia, M., Zhang, B. (eds) Communications, Signal Processing, and Systems. CSPS 2019. Lecture Notes in Electrical Engineering, vol 571. Springer, Singapore. https://doi.org/10.1007/978-981-13-9409-6_219

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-9409-6_219

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-9408-9

  • Online ISBN: 978-981-13-9409-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics