Nothing Special   »   [go: up one dir, main page]

Skip to main content

SISU - A Speaker Identification System from Short Utterances

  • Conference paper
  • First Online:
Recent Trends in Image Processing and Pattern Recognition (RTIP2R 2018)

Abstract

Technology has made a paramount impact in our daily life over the last decade by assisting us in ways more than we could have imagined of in the last century. Safeguarding our identity in the digital world has been one of the primary concerns in this era and scientists have devoted their attention to biometric security for the same due to its array of advantages. Humans can be identified using a lot of biometrics and voice is one of them. SISU (Speaker Identification from Short Utterances) is a system proposed towards identification of humans from voice clips of very short length. The system works by Mel Frequency Cepstral Coefficient (MFCC) based features. The system was tested on a short utterance phoneme database of 3290 clips and a highest accuracy of 96.66% was obtained using Random Forest amidst different classifiers for the system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Jain, A.K., Ross, A., Prabhakar, S.: An introduction to biometric recognition. IEEE Trans. Circuits Syst. Video Technol. 14(1), 4–20 (2004)

    Article  Google Scholar 

  2. Chakroun, R., Zouari, L.B., Frikha, M., Hamida, A.B.: A novel approach based on support vector machines for automatic speaker identification. In: AICCSA-2015. IEEE (2015)

    Google Scholar 

  3. Chaudhari, A., Rahulkar, A., Dhonde, S.B.: Combining dynamic features with MFCC for text-independent speaker identification. In: ICIP-2015, pp. 160–164. IEEE (2015)

    Google Scholar 

  4. Tsai, W.H., Lin, J.C., Ma, C.H., Liao, Y.F.: Speaker identification for personalized smart TVs. In: ICCE-TW-2016, pp. 1–2. IEEE (2016)

    Google Scholar 

  5. Indumathi, A., Chandra, E.: Speaker identification using bagging techniques. In: ICCCS-2015, pp. 223–229. IEEE (2015)

    Google Scholar 

  6. Chakroun, R., Zouari, L.B., Frikha, M., Hamida, A.B.: A hybrid system based on GMM-SVM for speaker identification. In: ISDA-2015, pp. 654–658. IEEE (2015)

    Google Scholar 

  7. Lei, L., She, K.: Speaker identification using wavelet Shannon entropy and probabilistic neural network. In: ICNC-FSKD-2016, pp. 566–571. IEEE (2016)

    Google Scholar 

  8. Sardar, V.M., Shrbahadurkar, S.D.: Speaker identification with whispered speech mode using MFCC: challenges to whispered speech identification. In: ICIP-2015, pp. 70–74. IEEE (2015)

    Google Scholar 

  9. Ma, Z., Yu, H., Tan, Z.H., Guo, J.: Text-independent speaker identification using the histogram transform model. IEEE Access 4, 9733–9739 (2016)

    Article  Google Scholar 

  10. Lin, W.: An improved GMM-based clustering algorithm for efficient speaker identification. In: ICCSNT-2015, vol. 1, pp. 1490–1493. IEEE (2015)

    Google Scholar 

  11. Biagetti, G., Crippa, P., Falaschetti, L., Orcioni, S., Turchetti, C.: An investigation on the accuracy of truncated DKLT representation for speaker identification with short sequences of speech frames. IEEE Trans. Cybern. 47(12), 4235–4249 (2017)

    Article  Google Scholar 

  12. Shafee, S., Anuradha, B.: Speaker identification and Spoken word recognition in noisy background using artificial neural networks. In: ICEEOT-2016, pp. 912–917. IEEE (2016)

    Google Scholar 

  13. Al-Kaltakchi, M.T., Woo, W.L., Dlay, S.S., Chambers, J.A.: Study of statistical robust closed set speaker identification with feature and score-based fusion. In: SSP-2016, pp. 1–5. IEEE (2016)

    Google Scholar 

  14. AboElenein, N.M., Amin, K.M., Ibrahim, M., Hadhoud, M.M.: Improved text-independent speaker identification system for real time applications. In: JEC-ECC-2016, pp. 58–62. IEEE (2016)

    Google Scholar 

  15. Lewis, M.P., Simons, G.F., Fennig, C.D.: Ethnologue: Languages of the World, vol. 16. SIL International, Dallas (2009)

    Google Scholar 

  16. Mukherjee, H., Halder, C., Phadikar, S., Roy, K.: READ—a Bangla phoneme recognition system. In: Satapathy, S., Bhateja, V., Udgata, S., Pattnaik, P. (eds.) AISC, vol. 515, pp. 599–607. Springer, Singapore (2017). https://doi.org/10.1007/978-981-10-3153-3_59

    Chapter  Google Scholar 

  17. Mukherjee, H., Halder, C., Phadikar, S., Roy, K.: READ—a Bangla phoneme recognition system. In: Satapathy, S.C., Bhateja, V., Udgata, S.K., Pattnaik, P.K. (eds.) Proceedings of the 5th International Conference on Frontiers in Intelligent Computing: Theory and Applications. AISC, vol. 515, pp. 599–607. Springer, Singapore (2017). https://doi.org/10.1007/978-981-10-3153-3_59

    Chapter  Google Scholar 

  18. Mukherjee, H., Dhar, A., Phadikar, S., Roy, K.: RECAL-a language identification system. In: ICSPC-2017, pp. 300–304. IEEE (2017)

    Google Scholar 

  19. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  Google Scholar 

  20. John, G.H., Langley, P.: Estimating continuous distributions in Bayesian classifiers. In: UAI-1995, pp. 338–345. Morgan Kaufmann Publishers Inc., August 1995

    Google Scholar 

  21. Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods. Cambridge University Press, Cambridge (2000)

    Book  Google Scholar 

  22. Obaidullah, S.M., Mondal, A., Das, N., Roy, K.: Script identification from printed Indian document images and performance evaluation using different classifiers. Appl. Comput. Intell. Soft Comput. 2014, 22 (2014)

    Article  Google Scholar 

  23. Fan, R.E., Chang, K.W., Hsieh, C.J., Wang, X.R., Lin, C.J.: LIBLINEAR: a library for large linear classification. J. Mach. Learn. Res. 9(Aug), 1871–1874 (2008)

    MATH  Google Scholar 

  24. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA data mining software: an update. ACM SIGKDD Explor. Newsl. 11(1), 10–18 (2009)

    Article  Google Scholar 

  25. Dems̆ar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7, 1–30 (2006)

    MathSciNet  Google Scholar 

  26. Vajda, S., Santosh, K.C.: A fast k-nearest neighbor classifier using unsupervised clustering. In: Santosh, K.C., Hangarge, M., Bevilacqua, V., Negi, A. (eds.) RTIP2R 2016. CCIS, vol. 709, pp. 185–193. Springer, Singapore (2017). https://doi.org/10.1007/978-981-10-4859-3_17

    Chapter  Google Scholar 

  27. Bouguelia, M.R., Nowaczyk, S., Santosh, K.C., Verikas, A.: Agreeing to disagree: active learning with noisy labels without crowdsourcing. Int. J. Mach. Learn. Cybern. 9, 1–13 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Himadri Mukherjee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mukherjee, H., Dutta, M., Obaidullah, S.M., Santosh, K.C., Phadikar, S., Roy, K. (2019). SISU - A Speaker Identification System from Short Utterances. In: Santosh, K., Hegadi, R. (eds) Recent Trends in Image Processing and Pattern Recognition. RTIP2R 2018. Communications in Computer and Information Science, vol 1035. Springer, Singapore. https://doi.org/10.1007/978-981-13-9181-1_39

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-9181-1_39

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-9180-4

  • Online ISBN: 978-981-13-9181-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics