Nothing Special   »   [go: up one dir, main page]

Skip to main content

System Development for Automatic Control Using BCI

  • Conference paper
  • First Online:
Agents and Multi-agent Systems: Technologies and Applications 2019

Abstract

Brain-Computer Interface (BCI for its acronym in English) is a device that allow the communication between a user and adapted environment. The Ambient Assisted Living (AAL for its acronym in English) can be potentially used to assist people with some motor disability. In this article, we show the low-cost system development that permit an actuator control through commercial EEG signal acquisition, detecting a flickering. The system is also tested to evaluate its feasibility with an offline analysis in Matlab. The experiments and results are shown.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mora, N., et al.: Controlling AAL environments through BCI. In: MESA 2014 - 10th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications, Conference Proceedings (2014). https://doi.org/10.1109/MESA.2014.6935627

  2. Lotte, F., et al.: Exploring large virtual environments by thoughts using a brain-computer interface based on motor imagery and high-level commands. Presence: Teleoperators Virtual Environ. 19(1), 54–70 (2010). ISSN: 10547460. https://doi.org/10.1162/pres.19.1.54

    Article  Google Scholar 

  3. Sakamaki, I., et al.: Assistive technology design and preliminary testing of a robot platform based on movement intention using low-cost brain computer interface. In: 2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 2243–2248 (2017). ISSN: 1062-922X

    Google Scholar 

  4. Belwafi, K., et al.: An embedded implementation of home devices control system based on brain computer interface. In: Proceedings of the International Conference on Microelectronics, ICM2015-March, pp. 140–143 (2014). https://doi.org/10.1109/ICM.2014.7071826

  5. Belwafi, K., et al.: Online adaptive filters to classify left and right hand motor imagery. In: Proceedings of the 9th International Joint Conference on Biomedical Engineering Systems and Technologies, pp. 335–339 (2016). http://www.scitepress.org/DigitalLibrary/Link.aspx?doi=10.5220/0005846503350339

  6. Belwafi, K., et al.: An adaptive EEG filtering approach to maximize the classification accuracy in motor imagery. In: IEEE SSCI 2014 - 2014 IEEE Symposium Series on Computational Intelligence - CCMB 2014:2014 IEEE Symposium on Computational Intelligence, Cognitive Algo-rithms, Mind, and Brain, Proceedings, pp. 121–126 (2014). https://doi.org/10.1109/CCMB.2014.7020704

  7. Ianosi-Andreeva-Dimitrova, A., Mândru, D.S., Abrudean, A.: A hybrid brain-computer interface implementation for the control of an assistive device. In: 2017 E-Health and Bioengineering Conference, EHB 2017, pp. 543–546 (2017). https://doi.org/10.1109/EHB.2017.7995481

  8. Mora, N., et al.: Plug and play brain–computer interfaces for effective active and assisted living control. Med. Biol. Eng. Comput. 55(8), 1339–1352 (2017). ISSN: 17410444. https://doi.org/10.1007/s11517-016-1596-4

    Article  Google Scholar 

  9. Belwafi, K., et al.: A hardware/software prototype of EEG-based BCI system for home device control. J. Signal Process. Syst. 89(2), 263–279 (2017). ISSN: 19398115. https://doi.org/10.1007/s11265-016-1192-8

    Article  Google Scholar 

  10. Cantillo-Negrete, J., et al.: Control signal for a mechatronic hand orthosis aimed for neurore habilitation. In: Pan American Health Care Exchanges, PAHCE2015-July, pp. 1–4 (2015). ISSN: 2327817X. https://doi.org/10.1109/PAHCE.2015.7173328

  11. Prataksita, N., et al.: Brain-robot control interface: development and application. In: 2014 IEEE International Symposium on Bioelectronics and Bioinformatics, IEEE ISBB 2014, pp. 10–13 (2014). https://doi.org/10.1109/ISBB.2014.6820928

  12. Looned, R., et al.: Assisting drinking with an affordable BCI-controlled wearable robot and electrical stimulation: a preliminary investigation. J. Neuroeng. Rehabil. 11 (2014)

    Article  Google Scholar 

  13. Yu, G., et al.: EEG-based brain-controlled lower extremity exoskeleton rehabilitation robot. In: 2017 IEEE International Conference on Cybernetics and Intelligent Systems, CIS 2017 and IEEE Conference on Robotics, Automation and Mechatronics, RAM 2017 - Proceedings 2018-January, pp. 763–767 (2018). https://doi.org/10.1109/ICCIS.2017.8274875

  14. Several Authors. Technical specifications, validation, and research use (2015). http://developer.choosemuse.com

  15. Moctezuma, L.A., Molinas, M., Torres-García, A.A.: Towards an API for EEG-Based Imagined Speech classification (2018)

    Google Scholar 

  16. Youssef Ali Amer, A., Wittevrongel, B., VanHulle, M.M.: Accurate decoding of short, phase-encoded SSVEPs. Sensors (Switzerland) 18(3), 1–9 (2018). ISSN: 14248220. https://doi.org/10.3390/s18030794

    Article  Google Scholar 

  17. Biomedical signal. Development of a MATLAB-based toolbox for BCI applications in VR, pp. 1579–1583 (2012)

    Google Scholar 

  18. Charles, K.: Alexander and Matthew N. O. Sadiku. Fundamentos de cir-cuitos el ectricos. 3rd edn, p. 1051. McGraw Hill (2004). ISBN: 0-07-326800-3

    Google Scholar 

  19. Espressif systems. Development boards (2018). https://www.espressif.com/en

  20. Espressif systems. ESP32 at instruction set and examples (2018). ISSN: 03614409

    Google Scholar 

  21. Hopcroft, J., Motwani, R., Ullman, J.: Introduccion a la teorııa de automatas, lenguajes y computación, p. 452 (2008). ISBN: 978-847-829-0888

    Google Scholar 

Download references

Acknowledgements

To CONACYT, for their support during the master degree process and research stay in Valencia, Spain. To “Persianas de los altos”, for their support with materials and Guanajuato’s government for giving us their support to complete this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Meza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Meza, A., Baltazar, R., Casillas, M., Zamudio, V., Mosiño, F., Serna, B. (2020). System Development for Automatic Control Using BCI. In: Jezic, G., Chen-Burger, YH., Kusek, M., Šperka, R., Howlett, R., Jain, L. (eds) Agents and Multi-agent Systems: Technologies and Applications 2019. Smart Innovation, Systems and Technologies, vol 148. Springer, Singapore. https://doi.org/10.1007/978-981-13-8679-4_15

Download citation

Publish with us

Policies and ethics