Nothing Special   »   [go: up one dir, main page]

Skip to main content

Gait Phase Optimization of Swing Foot for a Quadruped Robot

  • Conference paper
  • First Online:
Cognitive Systems and Signal Processing (ICCSIP 2018)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1005))

Included in the following conference series:

Abstract

Quadruped robot has gained considerable interests since its wide applications in both military and entertainment scenarios. On the control and gait planning of quadruped robots, walking stability is the fundamental problem in most scenarios. In this paper, we proposed a gait phase optimization method on the swing foot of quadruped robots in walking gait. In the proposed gait optimization method, Lift-up and Touch-down phases are added in gait planning of swing foot, which aiming to improve the stability in walking phases. Finally we validate the proposed method on a quadruped robot, and experimental results indicate that the proposed gait phase optimization method has the ability to improve the stability of the quadruped robot in walking gait.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Buehler, M., Playter, R., Raibert, M.: Robots step outside. In: International Symposium Adaptive Motion of Animals and Machines Ilmenau, pp. 1–4 (2005)

    Google Scholar 

  2. Nelson, G., Saunders, A., Neville, N., et al.: PETMAN: a humanoid robot for testing chemical protective clothing. J. Robot. Soc. Japan 30(4), 372–377 (2012)

    Article  Google Scholar 

  3. Raibert, M., Blankespoor, K., Nelson, G., et al.: BigDog, the rough-terrain quaduped robot. IFAC Proc. Vol. 41(2), 10822–10825 (2008)

    Article  Google Scholar 

  4. Michael, K.: Meet Boston dynamics LS3-the latest robotic war machine. Ted Talk (2012)

    Google Scholar 

  5. Allen, M.: Pray that this scary galloping four-legged robot never comes for you, April 2014. http://www.wired.com/dangerroom/2013/10/wildcat/

  6. Valenzuela, A.K., Kim, S.: Optimally scaled hip-force planning: a control approach for quadrupedal running. In: International Conference on Robotics and Automation, pp. 1901–1907 (2012)

    Google Scholar 

  7. Rong, X., Li, Y., Meng, J., et al.: Design for several hydraulic parameters of a quadruped robot. Appl. Math. 8(5), 2465–2470 (2014)

    Google Scholar 

  8. Spot-mini: A nimble robot that handles objects, climbs stairs, and will operate in offices, homes and outdoors (2014). https://www.bostondynamics.com/spot-mini

  9. Semini, C., Tsagarakis, N.G., Guglielmino, E., et al.: Design of HyQ - a hydraulically and electrically actuated quadruped robot. Proc. Inst. Mech. Eng. 225, 831–849 (2011)

    Google Scholar 

  10. Focchi, M., Guglielmino, E., Semini, C., et al.: Control of a hydraulically-actuated quadruped robot leg. In: International Conference on Robotics and Automation, pp. 4182–4188 (2010)

    Google Scholar 

  11. Hutter, M., Gehring, C., Jud, D., et al.: ANYmal - a highly mobile and dynamic quadrupedal robot. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 38–44 (2016)

    Google Scholar 

  12. Hutter, M., Gehring, C., Lauber, A., et al.: ANYmal - toward legged robots for harsh environments. Adv. Robot. 1–14 (2017)

    Google Scholar 

  13. Murphy, M.P., Saunders, A., Moreira, C., et al.: The littledog robot. Int. J. Robot. Res. 30(2), 145–149 (2011)

    Article  Google Scholar 

  14. Neuhaus, P.D., Pratt, J.E., Johnson, M.J.: Comprehensive summary of the institute for human and machine cognition’s experience with LittleDog. Int. J. Robot. Res. 30(2), 216–235 (2011)

    Article  Google Scholar 

  15. Laikago (2016). http://www.unitree.cc/cn/showcase/

  16. Kolter, J.Z., Ng, A.Y.: The stanford littledog: a learning and rapid replanning approach to quadruped locomotion. Int. J. Robot. Res. 30(2), 150–174 (2011)

    Article  Google Scholar 

  17. Brooks, R.S.: A robust layered control system for a mobile robot. IEEE J. Robot. Autom. 2(1), 14–23 (1986)

    Article  Google Scholar 

  18. Hooper, S.L.: Central pattern generators. Curr. Biol. 10(5), 176–179 (2000)

    Article  MathSciNet  Google Scholar 

  19. Kolter, J.Z., Rodgers, M.P., Ng, A.Y.: A control architecture for quadruped locomotion over rough terrain. In: IEEE International Conference on Robotics and Automation, pp. 811–818 (2008)

    Google Scholar 

  20. Rebula, J.R., Neuhaus, P.D., Bonnlander, B.V., et al.: A controller for the LittleDog quadruped walking on rough terrain. In: IEEE International Conference on Robotics and Automation, pp. 1467–1473 (2007)

    Google Scholar 

  21. Vukobratovic, M., Borovac, B.: Zero-moment point: thirty five years of its life. Int. J. Humanoid Robot. 1, 157–173 (2004)

    Article  Google Scholar 

  22. Hutter, M., Gehring, C., Hoepflinger, M.H., et al.: Walking and running with StarlETH. In: International Symposium on Adaptive Motion of Animals and Machines (2013)

    Google Scholar 

  23. Whitney, D.E.: Historical perspective and state of the art in robot force control. Int. J. Robot. Res. 6(1), 3–14 (1987)

    Article  Google Scholar 

  24. Hogan, N.: Impedance control: an approach to manipulation. In: American Control Conference, vol. 1984, pp. 304–313 (1987)

    Google Scholar 

  25. Kazerooni, H., Sheridan, T.B., Houpt, P.K.: Robust compliant motion for manipulators, part I: the fundamental concepts of compliant motion. IEEE J. Robot. Autom. 2(2), 83–92 (1986)

    Article  Google Scholar 

  26. Kolter, J.Z., Rogdgers, M.P., Ng, A.Y.: A control architecture for quadruped locomotion over rough terrain. In: IEEE International Coference on Robotics and Automation, pp. 811–818 (2008)

    Google Scholar 

Download references

Acknowledgment

This work is supported by the National Natural Science Foundation of China (NSFC) under grant No. 61603078 and No. U1613223, and is also supported by Fundamental Research Funds for the Central Universities at University of Electronic Science and Technology of China (UESTC) under grant No. ZYGX2015KYQD044.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wu, G., Huang, R., Hao, J., Cheng, H., Wang, S. (2019). Gait Phase Optimization of Swing Foot for a Quadruped Robot. In: Sun, F., Liu, H., Hu, D. (eds) Cognitive Systems and Signal Processing. ICCSIP 2018. Communications in Computer and Information Science, vol 1005. Springer, Singapore. https://doi.org/10.1007/978-981-13-7983-3_36

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-7983-3_36

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-7982-6

  • Online ISBN: 978-981-13-7983-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics