Nothing Special   »   [go: up one dir, main page]

Skip to main content

Matrix Representation of Parallel Computation for Spiking Neural P Systems

  • Conference paper
  • First Online:
Bio-inspired Computing – Theories and Applications (BIC-TA 2016)

Abstract

Spiking neural P systems (in short, SN P systems) is a class of distributed parallel computing models. Parallel computation of matrix operations has been supported on some new computing devices such as GPU, which provides a promising way to simulate the parallel computation of SN P systems. In this paper a matrix representation method of parallel computation for SN P systems is developed. In firing mechanism of SN P systems, the delay factor plays the role of controlling the receiving of spikes in neurons and the opportunity of emitting the spikes after the firing. In order to achieve the parallel computation of SN P systems, several matrices or vectors are introduced to decompose the firing mechanism of neurons. The parallel computation procedure of SN P systems can be achieved by the operations of the matrices or vectors. Two examples are used to illustrate the parallel computation procedure using the matrix operations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Păun, G.: Computing with membranes. J. Comput. Syst. Sci. 61(1), 108–143 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  2. Păun, G., Rozenberg, G., Salomaa, A.: The Oxford Handbook of Membrance Computing. Oxford Unversity Press, New York (2010)

    MATH  Google Scholar 

  3. Peng, H., Wang, J., Pérez-Jiménez, M.J., Riscos-Núñez, A.: An unsupervised learning algorithm for membrane computing. Inf. Sci. 304, 80–91 (2015)

    Article  Google Scholar 

  4. Peng, H., Wang, J., Shi, P., Riscos-Núñez, A., Pérez-Jiménez, M.J.: An automatic clustering algorithm inspired by membrane computing. Pattern Recognit. Lett. 68, 34–40 (2015)

    Article  Google Scholar 

  5. Peng, H., Wang, J., Shi, P., Pérez-Jiménez, M.J., Riscos-Núñez, A.: An extended membrane system with active membrane to solve automatic fuzzy clustering problems. Int. J. Neural Syst. 26, 1–17 (2016)

    Article  Google Scholar 

  6. Wang, J., Shi, P., Peng, H.: Membrane computing model for IIR filter design. Inf. Sci. 329, 164–176 (2016)

    Article  Google Scholar 

  7. Zhang, G., Gheorghe, M., Pan, L., Pérez-Jiménez, M.J.: Evolutionary membrane computing: a comprehensive survey and new results. Inf. Sci. 279, 528–551 (2014)

    Article  Google Scholar 

  8. Ionescu, M., Păun, G., Yokomori, T.: Spiking neural P systems. Fundam. Inform. 71(2–3), 279–308 (2006)

    MATH  MathSciNet  Google Scholar 

  9. Păun, G., Pérez-Jiménez, M.J., Rozenberg, G.: Spike train in spiking neural P systems. Int. J. Found. Comput. Sci. 17(4), 975–1002 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  10. Chen, H., Ishdorj, T.-O., Păun, G., Pérez-Jiménez, M.J.: Handling languages with spiking neural P systems with extended rules. Rom. J. Inf. Sci. Technol. 9(3), 151–162 (2006)

    MATH  Google Scholar 

  11. Pan, L.Q., Wang, J., Hoogeboom, H.J.: Spiking neural P systems with astrocytes. Neural Comput. 24, 805–825 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  12. Song, T., Pan, L., Păun, G.: Asynchronous spiking neural P systems with local synchronization. Inf. Sci. 219, 197–207 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  13. Zhang, X.Y., Jiang, Y., Pan, L.Q.: A variant of P machine: splicing P machine. J. Comput. Theor. Nanosci. 10, 1376–1384 (2013)

    Article  Google Scholar 

  14. Zeng, X.X., Zhang, X.Y., Song, T., Pan, L.Q.: Spiking neural P systems with thresholds. Neural Comput. 26, 1340–1361 (2014)

    Article  MathSciNet  Google Scholar 

  15. Zhang, G.X., Rong, H., Neri, F., Pérez-Jiménez, M.J.: An optimization spiking neural P system for approximately solving combinatorial optimization problems. Int. J. Neural Syst. 24, 1–16 (2014)

    Google Scholar 

  16. Wang, J., Zhou, L., Peng, H., Zhang, G.: An extended spiking neural P system for fuzzy knowledge representation. Int. J. Innov. Comput. Inf. Control 7(7A), 3709–3724 (2011)

    Google Scholar 

  17. Wang, J., Shi, P., Peng, H., Pérez-Jiménez, M.J., Wang, T.: Weighted fuzzy spiking neural P system. IEEE Trans. Fuzzy Syst. 21, 209–220 (2013)

    Article  Google Scholar 

  18. Peng, H., Wang, J., Pérez-Jiménez, M.J., Wang, H., Shao, J., Wang, T.: Fuzzy reasoning spiking neural P system for fault diagnosis. Inf. Sci. 235, 106–116 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  19. Wang, J., Peng, H.: Adaptive fuzzy spiking neural P systems for fuzzy inference and learning. Int. J. Comput. Math. 90(4), 857–868 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  20. Zeng, X., Adorna, H., Martínez-del-Amor, M.Á., Pan, L., Pérez-Jiménez, M.J.: Matrix representation of spiking neural P systems. In: Gheorghe, M., Hinze, T., Păun, G., Rozenberg, G., Salomaa, A. (eds.) CMC 2010. LNCS, vol. 6501, pp. 377–391. Springer, Heidelberg (2010). doi:10.1007/978-3-642-18123-8_29

    Chapter  Google Scholar 

  21. Cabarle, F.G., Adorna, H., Martínez-del-Amor, M.A., Pérez-Jiménez, M.J.: Spiking neural P system simulations on a high performance GPU platform. In: Xiang, Y., Cuzzocrea, A., Hobbs, M., Zhou, W. (eds.) ICA3PP 2011. LNCS, vol. 7017, pp. 99–108. Springer, Heidelberg (2011). doi:10.1007/978-3-642-24669-2_10

    Chapter  Google Scholar 

  22. Cabarle, F., Adorna, H., Martínez-del-Amor, M.A.: Simulating spiking neural P systems without delays using GPUs. Int. J. Nat. Comput. Res. 2(2), 19–31 (2011)

    Article  Google Scholar 

  23. Cabarle, F.G.C., Adorna, H., Martínez, M.A.: A spiking neural p system simulator based on CUDA. In: Gheorghe, M., Păun, G., Rozenberg, G., Salomaa, A., Verlan, S. (eds.) CMC 2011. LNCS, vol. 7184, pp. 87–103. Springer, Heidelberg (2012). doi:10.1007/978-3-642-28024-5_8

    Chapter  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the National Natural Science Foundation of China (No. 61472328), Research Fund of Sichuan Science and Technology Project (No. 2015HH0057) and the key equipment project of Sichuan Provincial Economic and Information Committee (No. [2014]128), China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Peng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Hu, J., Chen, G., Peng, H., Wang, J., Huang, X., Luo, X. (2016). Matrix Representation of Parallel Computation for Spiking Neural P Systems. In: Gong, M., Pan, L., Song, T., Zhang, G. (eds) Bio-inspired Computing – Theories and Applications. BIC-TA 2016. Communications in Computer and Information Science, vol 681. Springer, Singapore. https://doi.org/10.1007/978-981-10-3611-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-3611-8_18

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-3610-1

  • Online ISBN: 978-981-10-3611-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics