Abstract
Spiking neural P systems (in short, SN P systems) is a class of distributed parallel computing models. Parallel computation of matrix operations has been supported on some new computing devices such as GPU, which provides a promising way to simulate the parallel computation of SN P systems. In this paper a matrix representation method of parallel computation for SN P systems is developed. In firing mechanism of SN P systems, the delay factor plays the role of controlling the receiving of spikes in neurons and the opportunity of emitting the spikes after the firing. In order to achieve the parallel computation of SN P systems, several matrices or vectors are introduced to decompose the firing mechanism of neurons. The parallel computation procedure of SN P systems can be achieved by the operations of the matrices or vectors. Two examples are used to illustrate the parallel computation procedure using the matrix operations.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Păun, G.: Computing with membranes. J. Comput. Syst. Sci. 61(1), 108–143 (2000)
Păun, G., Rozenberg, G., Salomaa, A.: The Oxford Handbook of Membrance Computing. Oxford Unversity Press, New York (2010)
Peng, H., Wang, J., Pérez-Jiménez, M.J., Riscos-Núñez, A.: An unsupervised learning algorithm for membrane computing. Inf. Sci. 304, 80–91 (2015)
Peng, H., Wang, J., Shi, P., Riscos-Núñez, A., Pérez-Jiménez, M.J.: An automatic clustering algorithm inspired by membrane computing. Pattern Recognit. Lett. 68, 34–40 (2015)
Peng, H., Wang, J., Shi, P., Pérez-Jiménez, M.J., Riscos-Núñez, A.: An extended membrane system with active membrane to solve automatic fuzzy clustering problems. Int. J. Neural Syst. 26, 1–17 (2016)
Wang, J., Shi, P., Peng, H.: Membrane computing model for IIR filter design. Inf. Sci. 329, 164–176 (2016)
Zhang, G., Gheorghe, M., Pan, L., Pérez-Jiménez, M.J.: Evolutionary membrane computing: a comprehensive survey and new results. Inf. Sci. 279, 528–551 (2014)
Ionescu, M., Păun, G., Yokomori, T.: Spiking neural P systems. Fundam. Inform. 71(2–3), 279–308 (2006)
Păun, G., Pérez-Jiménez, M.J., Rozenberg, G.: Spike train in spiking neural P systems. Int. J. Found. Comput. Sci. 17(4), 975–1002 (2006)
Chen, H., Ishdorj, T.-O., Păun, G., Pérez-Jiménez, M.J.: Handling languages with spiking neural P systems with extended rules. Rom. J. Inf. Sci. Technol. 9(3), 151–162 (2006)
Pan, L.Q., Wang, J., Hoogeboom, H.J.: Spiking neural P systems with astrocytes. Neural Comput. 24, 805–825 (2012)
Song, T., Pan, L., Păun, G.: Asynchronous spiking neural P systems with local synchronization. Inf. Sci. 219, 197–207 (2013)
Zhang, X.Y., Jiang, Y., Pan, L.Q.: A variant of P machine: splicing P machine. J. Comput. Theor. Nanosci. 10, 1376–1384 (2013)
Zeng, X.X., Zhang, X.Y., Song, T., Pan, L.Q.: Spiking neural P systems with thresholds. Neural Comput. 26, 1340–1361 (2014)
Zhang, G.X., Rong, H., Neri, F., Pérez-Jiménez, M.J.: An optimization spiking neural P system for approximately solving combinatorial optimization problems. Int. J. Neural Syst. 24, 1–16 (2014)
Wang, J., Zhou, L., Peng, H., Zhang, G.: An extended spiking neural P system for fuzzy knowledge representation. Int. J. Innov. Comput. Inf. Control 7(7A), 3709–3724 (2011)
Wang, J., Shi, P., Peng, H., Pérez-Jiménez, M.J., Wang, T.: Weighted fuzzy spiking neural P system. IEEE Trans. Fuzzy Syst. 21, 209–220 (2013)
Peng, H., Wang, J., Pérez-Jiménez, M.J., Wang, H., Shao, J., Wang, T.: Fuzzy reasoning spiking neural P system for fault diagnosis. Inf. Sci. 235, 106–116 (2013)
Wang, J., Peng, H.: Adaptive fuzzy spiking neural P systems for fuzzy inference and learning. Int. J. Comput. Math. 90(4), 857–868 (2013)
Zeng, X., Adorna, H., Martínez-del-Amor, M.Á., Pan, L., Pérez-Jiménez, M.J.: Matrix representation of spiking neural P systems. In: Gheorghe, M., Hinze, T., Păun, G., Rozenberg, G., Salomaa, A. (eds.) CMC 2010. LNCS, vol. 6501, pp. 377–391. Springer, Heidelberg (2010). doi:10.1007/978-3-642-18123-8_29
Cabarle, F.G., Adorna, H., Martínez-del-Amor, M.A., Pérez-Jiménez, M.J.: Spiking neural P system simulations on a high performance GPU platform. In: Xiang, Y., Cuzzocrea, A., Hobbs, M., Zhou, W. (eds.) ICA3PP 2011. LNCS, vol. 7017, pp. 99–108. Springer, Heidelberg (2011). doi:10.1007/978-3-642-24669-2_10
Cabarle, F., Adorna, H., Martínez-del-Amor, M.A.: Simulating spiking neural P systems without delays using GPUs. Int. J. Nat. Comput. Res. 2(2), 19–31 (2011)
Cabarle, F.G.C., Adorna, H., Martínez, M.A.: A spiking neural p system simulator based on CUDA. In: Gheorghe, M., Păun, G., Rozenberg, G., Salomaa, A., Verlan, S. (eds.) CMC 2011. LNCS, vol. 7184, pp. 87–103. Springer, Heidelberg (2012). doi:10.1007/978-3-642-28024-5_8
Acknowledgements
This work was partially supported by the National Natural Science Foundation of China (No. 61472328), Research Fund of Sichuan Science and Technology Project (No. 2015HH0057) and the key equipment project of Sichuan Provincial Economic and Information Committee (No. [2014]128), China.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Hu, J., Chen, G., Peng, H., Wang, J., Huang, X., Luo, X. (2016). Matrix Representation of Parallel Computation for Spiking Neural P Systems. In: Gong, M., Pan, L., Song, T., Zhang, G. (eds) Bio-inspired Computing – Theories and Applications. BIC-TA 2016. Communications in Computer and Information Science, vol 681. Springer, Singapore. https://doi.org/10.1007/978-981-10-3611-8_18
Download citation
DOI: https://doi.org/10.1007/978-981-10-3611-8_18
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-10-3610-1
Online ISBN: 978-981-10-3611-8
eBook Packages: Computer ScienceComputer Science (R0)