Abstract
This paper proposes a new multi-object detection system based on binocular stereo vision. Firstly, we calibrate the two cameras to get intrinsic and extrinsic parameters and transformation matrix of the two cameras. Secondly, stereo rectify and stereo match is done to get a disparity map with image pairs acquired by binocular camera synchronously. Thus 3d coordinate of the objects is obtained. We then projects these 3D points to the ground to generate a top view projection image. Lastly, we propose distance and color based Mean shift cluster approach to classify the projected points, after which the number and position of objects can be determined. Binocular stereo vision based methods can overcome the problems of object occlusion, illumination variation, and shadow interference. Experiments in both indoor and corridor scenes show the advantages of the proposed system.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Szegedy, C., Toshev, A., Erhan, D.: Deep neural networks for object detection. In: Advances in Neural Information Processing Systems, pp. 2553–2561 (2013)
Tang, S., Andriluka, M., Schiele, B.: Detection and tracking of occluded people. Int. J. Comput. Vis. 110(1), 58–69 (2014)
Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 580–587 (2014)
Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, pp. 91–99 (2015)
Zhang, S., Wang, C., Chan, S.-C., Wei, X., Ho, C.-H.: New object detection, tracking, and recognition approaches for video surveillance over camera network. Sens. J. IEEE 15(5), 2679–2691 (2015)
Raman, R., Sa, P.K., Majhi, B.: Occlusion prediction algorithms for multi-camera network. In: 2012 Sixth International Conference on Distributed Smart Cameras (ICDSC), pp. 1–6. IEEE (2012)
Kowalczuk, J., Psota, E.T., Perez, L.C.: Real-time stereo matching on CUDA using an iterative refinement method for adaptive support-weight correspondences. IEEE Trans. Circuits Syst. Video Technol. 23(1), 94–104 (2013)
Nguyen, D.M., Hanca, J., Lu, S.-P., Munteanu, A.: Robust stereo matching using census cost, discontinuity-preserving disparity computation and view-consistent refinement. In: 2015 International Conference on 3D Imaging (IC3D), pp. 1–8. IEEE (2015)
Park, J., Choi, J., Seo, B.-K., Park, J.-I.: Fast stereo image rectification using mobile GPU. In: The Third International Conference on Digital Information Processing and Communications, pp. 485–488. The Society of Digital Information and Wireless Communication (2013)
Muñoz-Salinas, R., Medina-Carnicer, R., Madrid-Cuevas, F.J., Carmona-Poyato, A.: People detection and tracking with multiple stereo cameras using particle filters. J. Vis. Commun. Image Represent. 20(5), 339–350 (2009)
Cai, L., He, L., Yiren, X., Zhao, Y., Yang, X.: Multi-object detection and tracking by stereo vision. Pattern Recogn. 43(12), 4028–4041 (2010)
Schindler, K., Ess, A., Leibe, B., Van Gool, L.: Automatic detection and tracking of pedestrians from a moving stereo rig. ISPRS J. Photogramm. Remote Sens. 65(6), 523–537 (2010)
Colantonio, S., Benvenuti, M., Di Bono, M.G., Pieri, G., Salvetti, O.: Object tracking in a stereo and infrared vision system. Infrared Phys. Technol. 49(3), 266–271 (2007)
Kelly, P.: Pedestrian detection and tracking using stereo vision techniques. Ph.D. thesis, Dublin City University (2007)
Jafari, O.H., Mitzel, D., Leibe, B.: Real-time RGB-D based people detection and tracking for mobile robots and head-worn cameras. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 5636–5643. IEEE (2014)
Hegger, F., Hochgeschwender, N., Kraetzschmar, G.K., Ploeger, P.G.: People detection in 3d Point clouds using local surface normals. In: Chen, X., Stone, P., Sucar, L.E., Zant, T. (eds.) RoboCup 2012. LNCS (LNAI), vol. 7500, pp. 154–165. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39250-4_15
Zhang, Z.: A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 22(11), 1330–1334 (2000)
Tao, W., Jin, H., Zhang, Y.: Color image segmentation based on mean shift and normalized cuts. IEEE Trans. Syst. Man Cybern. Part B: Cybern. 37(5), 1382–1389 (2007)
Cheng, Y.: Mean shift, mode seeking, and clustering. IEEE Trans. Pattern Anal. Mach. Intell. 17(8), 790–799 (1995)
KaewTraKulPong, P., Bowden, R.: An improved adaptive background mixture model for real-time tracking with shadow detection. In: Remagnino, P., Jones, G.A., Paragios, N., Regazzoni, C.S. (eds.) Video-Based Surveillance Systems, pp. 135–144. Springer, Heidelberg (2002)
Yao, J., Odobez, J.-M.: Multi-layer background subtraction based on color and texture. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2007, pp. 1–8. IEEE (2007)
Acknowledgements
This work is supported by the National Natural Science Foundation of China (No. 61672429, No. 61502364, No. 61272288, No. 61231016), ShenZhen Science and Technology Foundation (JCYJ20160229172932237), Northwestern Polytechnical University (NPU) New AoXiang Star (No. G2015KY0301), Fundamental Research Funds for the Central Universities (No. 3102015AX007), NPU New People and Direction (No. 13GH014604).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
He, Z., Ren, Q., Yang, T., Li, J., Zhang, Y. (2016). Multi-object Detection Based on Binocular Stereo Vision. In: Zhang, Z., Huang, K. (eds) Intelligent Visual Surveillance. IVS 2016. Communications in Computer and Information Science, vol 664. Springer, Singapore. https://doi.org/10.1007/978-981-10-3476-3_14
Download citation
DOI: https://doi.org/10.1007/978-981-10-3476-3_14
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-10-3475-6
Online ISBN: 978-981-10-3476-3
eBook Packages: Computer ScienceComputer Science (R0)