Nothing Special   »   [go: up one dir, main page]

Skip to main content

Multi-object Detection Based on Binocular Stereo Vision

  • Conference paper
  • First Online:
Intelligent Visual Surveillance (IVS 2016)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 664))

Included in the following conference series:

Abstract

This paper proposes a new multi-object detection system based on binocular stereo vision. Firstly, we calibrate the two cameras to get intrinsic and extrinsic parameters and transformation matrix of the two cameras. Secondly, stereo rectify and stereo match is done to get a disparity map with image pairs acquired by binocular camera synchronously. Thus 3d coordinate of the objects is obtained. We then projects these 3D points to the ground to generate a top view projection image. Lastly, we propose distance and color based Mean shift cluster approach to classify the projected points, after which the number and position of objects can be determined. Binocular stereo vision based methods can overcome the problems of object occlusion, illumination variation, and shadow interference. Experiments in both indoor and corridor scenes show the advantages of the proposed system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Szegedy, C., Toshev, A., Erhan, D.: Deep neural networks for object detection. In: Advances in Neural Information Processing Systems, pp. 2553–2561 (2013)

    Google Scholar 

  2. Tang, S., Andriluka, M., Schiele, B.: Detection and tracking of occluded people. Int. J. Comput. Vis. 110(1), 58–69 (2014)

    Article  Google Scholar 

  3. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 580–587 (2014)

    Google Scholar 

  4. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, pp. 91–99 (2015)

    Google Scholar 

  5. Zhang, S., Wang, C., Chan, S.-C., Wei, X., Ho, C.-H.: New object detection, tracking, and recognition approaches for video surveillance over camera network. Sens. J. IEEE 15(5), 2679–2691 (2015)

    Article  Google Scholar 

  6. Raman, R., Sa, P.K., Majhi, B.: Occlusion prediction algorithms for multi-camera network. In: 2012 Sixth International Conference on Distributed Smart Cameras (ICDSC), pp. 1–6. IEEE (2012)

    Google Scholar 

  7. Kowalczuk, J., Psota, E.T., Perez, L.C.: Real-time stereo matching on CUDA using an iterative refinement method for adaptive support-weight correspondences. IEEE Trans. Circuits Syst. Video Technol. 23(1), 94–104 (2013)

    Article  Google Scholar 

  8. Nguyen, D.M., Hanca, J., Lu, S.-P., Munteanu, A.: Robust stereo matching using census cost, discontinuity-preserving disparity computation and view-consistent refinement. In: 2015 International Conference on 3D Imaging (IC3D), pp. 1–8. IEEE (2015)

    Google Scholar 

  9. Park, J., Choi, J., Seo, B.-K., Park, J.-I.: Fast stereo image rectification using mobile GPU. In: The Third International Conference on Digital Information Processing and Communications, pp. 485–488. The Society of Digital Information and Wireless Communication (2013)

    Google Scholar 

  10. Muñoz-Salinas, R., Medina-Carnicer, R., Madrid-Cuevas, F.J., Carmona-Poyato, A.: People detection and tracking with multiple stereo cameras using particle filters. J. Vis. Commun. Image Represent. 20(5), 339–350 (2009)

    Article  MATH  Google Scholar 

  11. Cai, L., He, L., Yiren, X., Zhao, Y., Yang, X.: Multi-object detection and tracking by stereo vision. Pattern Recogn. 43(12), 4028–4041 (2010)

    Article  Google Scholar 

  12. Schindler, K., Ess, A., Leibe, B., Van Gool, L.: Automatic detection and tracking of pedestrians from a moving stereo rig. ISPRS J. Photogramm. Remote Sens. 65(6), 523–537 (2010)

    Article  Google Scholar 

  13. Colantonio, S., Benvenuti, M., Di Bono, M.G., Pieri, G., Salvetti, O.: Object tracking in a stereo and infrared vision system. Infrared Phys. Technol. 49(3), 266–271 (2007)

    Article  Google Scholar 

  14. Kelly, P.: Pedestrian detection and tracking using stereo vision techniques. Ph.D. thesis, Dublin City University (2007)

    Google Scholar 

  15. Jafari, O.H., Mitzel, D., Leibe, B.: Real-time RGB-D based people detection and tracking for mobile robots and head-worn cameras. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 5636–5643. IEEE (2014)

    Google Scholar 

  16. Hegger, F., Hochgeschwender, N., Kraetzschmar, G.K., Ploeger, P.G.: People detection in 3d Point clouds using local surface normals. In: Chen, X., Stone, P., Sucar, L.E., Zant, T. (eds.) RoboCup 2012. LNCS (LNAI), vol. 7500, pp. 154–165. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39250-4_15

    Chapter  Google Scholar 

  17. Zhang, Z.: A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 22(11), 1330–1334 (2000)

    Article  Google Scholar 

  18. Tao, W., Jin, H., Zhang, Y.: Color image segmentation based on mean shift and normalized cuts. IEEE Trans. Syst. Man Cybern. Part B: Cybern. 37(5), 1382–1389 (2007)

    Article  Google Scholar 

  19. Cheng, Y.: Mean shift, mode seeking, and clustering. IEEE Trans. Pattern Anal. Mach. Intell. 17(8), 790–799 (1995)

    Article  Google Scholar 

  20. KaewTraKulPong, P., Bowden, R.: An improved adaptive background mixture model for real-time tracking with shadow detection. In: Remagnino, P., Jones, G.A., Paragios, N., Regazzoni, C.S. (eds.) Video-Based Surveillance Systems, pp. 135–144. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  21. Yao, J., Odobez, J.-M.: Multi-layer background subtraction based on color and texture. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2007, pp. 1–8. IEEE (2007)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (No. 61672429, No. 61502364, No. 61272288, No. 61231016), ShenZhen Science and Technology Foundation (JCYJ20160229172932237), Northwestern Polytechnical University (NPU) New AoXiang Star (No. G2015KY0301), Fundamental Research Funds for the Central Universities (No. 3102015AX007), NPU New People and Direction (No. 13GH014604).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

He, Z., Ren, Q., Yang, T., Li, J., Zhang, Y. (2016). Multi-object Detection Based on Binocular Stereo Vision. In: Zhang, Z., Huang, K. (eds) Intelligent Visual Surveillance. IVS 2016. Communications in Computer and Information Science, vol 664. Springer, Singapore. https://doi.org/10.1007/978-981-10-3476-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-3476-3_14

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-3475-6

  • Online ISBN: 978-981-10-3476-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics