Abstract
In this paper, we propose a deep siamese convolutional neutral network (DSCNN) to learn semantic-preserved global-level and local-level hashing codes simultaneously for effective image retrieval. Particularly, we analyze the visual attention characteristic inside hash bits by activation map of deep convolutional feature and propose a novel approach of bit selecting to reinforce the pertinence of local-level code. Finally, unlike most existing retrieval methods which use global or unsupervised local descriptors separately, leading to unexpected precision, we present a multi-level hash search method, taking advantage of both local and global properties of deep features. The experimental results show that our method outperforms several state-of-the-art on the Oxford 5k/105k and Paris 6k datasets.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, vol. 2012 (2012)
Szegedy, C., Toshev, A., Erhan, D.: Deep neural networks for object detection. In: Advances in Neural Information Processing Systems, pp. 2553–2561 (2013)
Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. Computer Science, pp. 1337–1342 (2015)
Babenko, A., Slesarev, A., Chigorin, A., Lempitsky, V.: Neural codes for image retrieval. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 584–599. Springer, Heidelberg (2014). doi:10.1007/978-3-319-10590-1_38
Razavian, A.S., Azizpour, H., Sullivan, J., Carlsson, S.: CNN features off-the-shelf: an astounding baseline for recognition. In: IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 512–519 (2014)
Babenko, A., Lempitsky, V.: Aggregating deep convolutional features for image retrieval. Computer Science (2015)
Tolias, G., Sicre, R., Jgou, H.: Particular object retrieval with integral max-pooling of CNN activations. Computer Science (2015)
Ng, Y.H., Yang, F.: Davis, L.S.: Exploiting local features from deep networks for image retrieval. Computer Science, pp. 53–61 (2015)
Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A.: Object detectors emerge in deep scene CNNs. Computer Science (2014)
Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A.: Learning deep features for discriminative localization. Computer Science (2015)
Andoni, A., Indyk, P.: Near-optimal hashing algorithms for approximate nearest neighbor in high dimensions. In: Annual Symposium on Foundations of Computer Science, pp. 117–122 (2006)
Liong, V.E., Lu, J., Wang, G., Moulin, P., Zhou, J.: Deep hashing for compact binary codes learning. In: Computer Vision and Pattern Recognition (2015)
Zhao, F., Huang, Y., Wang, L., Tan, T.: Deep semantic ranking based hashing for multi-label image retrieval. In: Computer Vision and Pattern Recognition (2015)
Lin, K., Yang, H.F., Hsiao, J.H., Chen, C.S.: Deep learning of binary hash codes for fast image retrieval. In: Computer Vision and Pattern Recognition Workshops, pp. 27–35 (2015)
Li, W.J., Wang, S., Kang, W.C.: Feature learning based deep supervised hashing with pairwise labels. Computer Science (2015)
Lai, H., Pan, Y., Liu, Y., Yan, S.: Simultaneous feature learning and hash coding with deep neural networks. In: Computer Vision and Pattern Recognition (2015)
Liu, H., Wang, R., Shan, S., Chen, X.: Deep supervised hashing for fast image retrieval. In: Computer Vision and Pattern Recognition (2016)
Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 818–833. Springer, Heidelberg (2014). doi:10.1007/978-3-319-10590-1_53
Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Computer Vision and Pattern Recognition (2015)
Philbin, J., Chum, O., Isard, M., Sivic, J.: Object retrieval with large vocabularies and fast spatial matching. In: Computer Vision and Pattern Recognition (2007)
Philbin, J., Chum, O., Isard, M., Sivic, J., Zisserman, A.: Lost in quantization: improving particular object retrieval in large scale image databases. In: Computer Vision and Pattern Recognition (2008)
Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S., Darrell, T.: Caffe: convolutional architecture for fast feature embedding. Eprint Arxiv, pp. 675–678 (2014)
Arandjelovic, R., Zisserman, A.: All about VLAD. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1578–1585 (2013)
Jegou, H., Zisserman, A.: Triangulation embedding and democratic aggregation for image search. In: Computer Vision and Pattern Recognition, pp. 3310–3317 (2014)
Razavian, A.S., Sullivan, J., Maki, A., Carlsson, S.: A baseline for visual instance retrieval with deep convolutional networks. Computer Science (2015)
Salvador, A., Giro-I-Nieto, X., Marques, F., Satoh, S.: Faster R-CNN features for instance search. Eprint Arxiv (2016)
Kalantidis, Y., Mellina, C., Osindero, S.: Cross-dimensional weighting for aggregated deep convolutional features. Eprint Arxiv (2015)
Acknowledgements
This work is supported by National Science Foundation of China (61373060,61672280), Qing Lan Project and the Research Foundation of ZTE Corporation.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Dong, Z., Song, G., Jia, X., Tan, X. (2016). Deep Multi-level Hashing Codes for Image Retrieval. In: Zhang, Z., Huang, K. (eds) Intelligent Visual Surveillance. IVS 2016. Communications in Computer and Information Science, vol 664. Springer, Singapore. https://doi.org/10.1007/978-981-10-3476-3_11
Download citation
DOI: https://doi.org/10.1007/978-981-10-3476-3_11
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-10-3475-6
Online ISBN: 978-981-10-3476-3
eBook Packages: Computer ScienceComputer Science (R0)