Nothing Special   »   [go: up one dir, main page]

Skip to main content

Deep Multi-level Hashing Codes for Image Retrieval

  • Conference paper
  • First Online:
Intelligent Visual Surveillance (IVS 2016)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 664))

Included in the following conference series:

Abstract

In this paper, we propose a deep siamese convolutional neutral network (DSCNN) to learn semantic-preserved global-level and local-level hashing codes simultaneously for effective image retrieval. Particularly, we analyze the visual attention characteristic inside hash bits by activation map of deep convolutional feature and propose a novel approach of bit selecting to reinforce the pertinence of local-level code. Finally, unlike most existing retrieval methods which use global or unsupervised local descriptors separately, leading to unexpected precision, we present a multi-level hash search method, taking advantage of both local and global properties of deep features. The experimental results show that our method outperforms several state-of-the-art on the Oxford 5k/105k and Paris 6k datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, vol. 2012 (2012)

    Google Scholar 

  2. Szegedy, C., Toshev, A., Erhan, D.: Deep neural networks for object detection. In: Advances in Neural Information Processing Systems, pp. 2553–2561 (2013)

    Google Scholar 

  3. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. Computer Science, pp. 1337–1342 (2015)

    Google Scholar 

  4. Babenko, A., Slesarev, A., Chigorin, A., Lempitsky, V.: Neural codes for image retrieval. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 584–599. Springer, Heidelberg (2014). doi:10.1007/978-3-319-10590-1_38

    Google Scholar 

  5. Razavian, A.S., Azizpour, H., Sullivan, J., Carlsson, S.: CNN features off-the-shelf: an astounding baseline for recognition. In: IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 512–519 (2014)

    Google Scholar 

  6. Babenko, A., Lempitsky, V.: Aggregating deep convolutional features for image retrieval. Computer Science (2015)

    Google Scholar 

  7. Tolias, G., Sicre, R., Jgou, H.: Particular object retrieval with integral max-pooling of CNN activations. Computer Science (2015)

    Google Scholar 

  8. Ng, Y.H., Yang, F.: Davis, L.S.: Exploiting local features from deep networks for image retrieval. Computer Science, pp. 53–61 (2015)

    Google Scholar 

  9. Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A.: Object detectors emerge in deep scene CNNs. Computer Science (2014)

    Google Scholar 

  10. Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A.: Learning deep features for discriminative localization. Computer Science (2015)

    Google Scholar 

  11. Andoni, A., Indyk, P.: Near-optimal hashing algorithms for approximate nearest neighbor in high dimensions. In: Annual Symposium on Foundations of Computer Science, pp. 117–122 (2006)

    Google Scholar 

  12. Liong, V.E., Lu, J., Wang, G., Moulin, P., Zhou, J.: Deep hashing for compact binary codes learning. In: Computer Vision and Pattern Recognition (2015)

    Google Scholar 

  13. Zhao, F., Huang, Y., Wang, L., Tan, T.: Deep semantic ranking based hashing for multi-label image retrieval. In: Computer Vision and Pattern Recognition (2015)

    Google Scholar 

  14. Lin, K., Yang, H.F., Hsiao, J.H., Chen, C.S.: Deep learning of binary hash codes for fast image retrieval. In: Computer Vision and Pattern Recognition Workshops, pp. 27–35 (2015)

    Google Scholar 

  15. Li, W.J., Wang, S., Kang, W.C.: Feature learning based deep supervised hashing with pairwise labels. Computer Science (2015)

    Google Scholar 

  16. Lai, H., Pan, Y., Liu, Y., Yan, S.: Simultaneous feature learning and hash coding with deep neural networks. In: Computer Vision and Pattern Recognition (2015)

    Google Scholar 

  17. Liu, H., Wang, R., Shan, S., Chen, X.: Deep supervised hashing for fast image retrieval. In: Computer Vision and Pattern Recognition (2016)

    Google Scholar 

  18. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 818–833. Springer, Heidelberg (2014). doi:10.1007/978-3-319-10590-1_53

    Google Scholar 

  19. Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Computer Vision and Pattern Recognition (2015)

    Google Scholar 

  20. Philbin, J., Chum, O., Isard, M., Sivic, J.: Object retrieval with large vocabularies and fast spatial matching. In: Computer Vision and Pattern Recognition (2007)

    Google Scholar 

  21. Philbin, J., Chum, O., Isard, M., Sivic, J., Zisserman, A.: Lost in quantization: improving particular object retrieval in large scale image databases. In: Computer Vision and Pattern Recognition (2008)

    Google Scholar 

  22. Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S., Darrell, T.: Caffe: convolutional architecture for fast feature embedding. Eprint Arxiv, pp. 675–678 (2014)

    Google Scholar 

  23. Arandjelovic, R., Zisserman, A.: All about VLAD. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1578–1585 (2013)

    Google Scholar 

  24. Jegou, H., Zisserman, A.: Triangulation embedding and democratic aggregation for image search. In: Computer Vision and Pattern Recognition, pp. 3310–3317 (2014)

    Google Scholar 

  25. Razavian, A.S., Sullivan, J., Maki, A., Carlsson, S.: A baseline for visual instance retrieval with deep convolutional networks. Computer Science (2015)

    Google Scholar 

  26. Salvador, A., Giro-I-Nieto, X., Marques, F., Satoh, S.: Faster R-CNN features for instance search. Eprint Arxiv (2016)

    Google Scholar 

  27. Kalantidis, Y., Mellina, C., Osindero, S.: Cross-dimensional weighting for aggregated deep convolutional features. Eprint Arxiv (2015)

    Google Scholar 

Download references

Acknowledgements

This work is supported by National Science Foundation of China (61373060,61672280), Qing Lan Project and the Research Foundation of ZTE Corporation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyang Tan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Dong, Z., Song, G., Jia, X., Tan, X. (2016). Deep Multi-level Hashing Codes for Image Retrieval. In: Zhang, Z., Huang, K. (eds) Intelligent Visual Surveillance. IVS 2016. Communications in Computer and Information Science, vol 664. Springer, Singapore. https://doi.org/10.1007/978-981-10-3476-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-3476-3_11

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-3475-6

  • Online ISBN: 978-981-10-3476-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics