Nothing Special   »   [go: up one dir, main page]

Skip to main content

Fingertip in the Eye: An Attention-Based Method for Real-Time Hand Tracking and Fingertip Detection in Egocentric Videos

  • Conference paper
  • First Online:
Pattern Recognition (CCPR 2016)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 662))

Included in the following conference series:

Abstract

The hand and fingertip tracking is the crucial part in the egocentric vision interaction, and it remains a challenging problem due to various factors like dynamic environment and hand deformation. We propose a convolutional neural network (CNN) based method for the real-time and accurate hand tracking and fingertip detection in RGB sequences captured by an egocentric mobile camera. Firstly, we build a large scale dataset, Ego-Finger, containing plenty of scenarios and human labeled ground truth. Secondly, we propose a two stage CNN pipeline, i.e., the human vision inspired Attention-based Hand Tracker (AHT) and the hand physical constrained Multi-Points Fingertip Detector (MFD). Comparing with state-of-the-art methods, the proposed method achieves very promising results in the real-time fashion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Ego-Finger dataset is available at:

    http://www.hcii-lab.net/data/SCUTEgoFinger/index.htm.

References

  1. Bambach, S., Lee, S., Crandall, D.J., Yu, C.: Lending a hand: detecting hands and recognizing activities in complex egocentric interactions. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1949–1957 (2015)

    Google Scholar 

  2. Baraldi, L., Paci, F., Serra, G., Benini, L., Cucchiara, R.: Gesture recognition in ego-centric videos using dense trajectories and hand segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 702–707 (2014)

    Google Scholar 

  3. Betancourt, A., Morerio, P., Marcenaro, L., Rauterberg, M., Regazzoni, C.: Filtering SVM frame-by-frame binary classification in a detection framework. In: IEEE International Conference on Image Processing (ICIP), pp. 2552–2556 (2015)

    Google Scholar 

  4. Betancourt, A., Morerio, P., Regazzoni, C.S., Rauterberg, M.: The evolution of first person vision methods: a survey. IEEE Trans. Circ. Syst. Video Technol. 25(5), 744–760 (2015)

    Article  Google Scholar 

  5. Bindemann, M.: Scene and screen center bias early eye movements in scene viewing. Vis. Res. 50(23), 2577–2587 (2010)

    Article  Google Scholar 

  6. Cheng, M., Mitra, N.J., Huang, X., Torr, P.H., Hu, S.: Global contrast based salient region detection. IEEE Trans. Pattern Anal. Mach. Intell. 37(3), 569–582 (2015)

    Article  Google Scholar 

  7. Goferman, S., Zelnik-Manor, L., Tal, A.: Context-aware saliency detection. IEEE Trans. Pattern Anal. Mach. Intell. 34(10), 1915–1926 (2012)

    Article  Google Scholar 

  8. Henriques, J.F., Caseiro, R., Martins, P., Batista, J.: High-speed tracking with kernelized correlation filters. IEEE Trans. Pattern Anal. Mach. Intell. 37(3), 583–596 (2015)

    Article  Google Scholar 

  9. Huang, Y., Liu, X., Zhang, X., Jin, L.: Deepfinger: a cascade convolutional neuron network approach to finger key point detection in egocentric vision with mobile camera. In: The IEEE Conference on System, Man and Cybernetics (SMC), pp. 2944–2949 (2015)

    Google Scholar 

  10. Kalal, Z., Mikolajczyk, K., Matas, J.: Tracking-learning-detection. IEEE Trans. Pattern Anal. Mach. Intell. 34(7), 1409–1422 (2012)

    Article  Google Scholar 

  11. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  12. Li, C., Kitani, K.M.: Model recommendation with virtual probes for egocentric hand detection. In: IEEE International Conference on Computer Vision (ICCV), pp. 2624–2631 (2013)

    Google Scholar 

  13. Li, C., Kitani, K.M.: Pixel-level hand detection in ego-centric videos. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3570–3577 (2013)

    Google Scholar 

  14. Mittal, A., Zisserman, A., Torr, P.H.: Hand detection using multiple proposals. In: BMVC, pp. 1–11. Citeseer (2011)

    Google Scholar 

  15. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., et al.: Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 115, 1–42 (2014)

    MathSciNet  Google Scholar 

  16. Sun, X., Wei, Y., Liang, S., Tang, X., Sun, J.: Cascaded hand pose regression. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2015)

    Google Scholar 

  17. Supancic, J.S., Rogez, G., Yang, Y., Shotton, J., Ramanan, D.: Depth-based hand pose estimation: data, methods, and challenges. In: The IEEE International Conference on Computer Vision (ICCV) (2015)

    Google Scholar 

  18. Tompson, J., Stein, M., Lecun, Y., Perlin, K.: Real-time continuous pose recovery of human hands using convolutional networks. ACM Trans. Graph. (TOG) 33(5), 169 (2014)

    Article  Google Scholar 

  19. Tseng, P.H., Carmi, R., Cameron, I.G., Munoz, D.P., Itti, L.: Quantifying center bias of observers in free viewing of dynamic natural scenes. J. Vis. 9(7), 4 (2009)

    Article  Google Scholar 

  20. Wang, N., Shi, J., Yeung, D.Y., Jia, J.: Understanding and diagnosing visual tracking systems. In: The IEEE International Conference on Computer Vision (ICCV) (2015)

    Google Scholar 

Download references

Acknowledgement

This research is supported in part by MSRA University Collaboration Fund (No.: FY16-RES-THEME-075), Science and Technology Planning Project of Guangdong Province (Grant No.: 2015B010130003, 2015B010101004, 2016A010101014), Fundamental Research Funds for the Central Universities (Grant No.: 2015ZZ027).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Liu, X., Huang, Y., Zhang, X., Jin, L. (2016). Fingertip in the Eye: An Attention-Based Method for Real-Time Hand Tracking and Fingertip Detection in Egocentric Videos. In: Tan, T., Li, X., Chen, X., Zhou, J., Yang, J., Cheng, H. (eds) Pattern Recognition. CCPR 2016. Communications in Computer and Information Science, vol 662. Springer, Singapore. https://doi.org/10.1007/978-981-10-3002-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-3002-4_12

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-3001-7

  • Online ISBN: 978-981-10-3002-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics