Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Comparative Experimental Study of Spectral Hashing

  • Conference paper
  • First Online:
Advances in Ubiquitous Networking 2 (UNet 2016)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 397))

Included in the following conference series:

  • 1191 Accesses

Abstract

Binary encoding methods that keep similarity in large scale data become very used for fast retrieval and effective storage. There have been many recent hashing technics that produce semantic binary codes. We are particularly interested in Spectral Hashing based methods which provide an efficient binary hash codes in a very simple way. This paper presents a comparative experimental study of Spectral Hashing to show the performance gain and the behaviour of this method on large scale Databases. In the best of our knowledge there is no experiments done on the evolution of the hamming matrix size on big data. Two large databases are used to show the limitation of Spectral Hashing and possible research tricks will be proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Datar, M., Immorlica, N., Indyk, P., et al.: Locality-sensitive hashing scheme based on p-stable distributions. In: Proceedings of the Twentieth Annual Symposium on Computational Geometry, pp. 253–262. ACM, Study (2004)

    Google Scholar 

  2. Weiss, Y., Torralba, A., et al. Fergus, R.: Spectral hashing. In: Advances in Neural Information Processing Systems. pp. 1753–1760 (2009)

    Google Scholar 

  3. He, J., Liu, W., Chang, S.-F.: Scalable similarity search with optimized Kernel Hashing. In: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining [Internet]. ACM, New York, NY, USA (2010)

    Google Scholar 

  4. Shao, J., WU, F., Ouyang, Chuanfei et al. Sparse spectral hashing. Pattern Recogn. Lett. 33(3), 271–277 (2012)

    Google Scholar 

  5. Wang, Q., Zhang, D., Si, L.: Weighted Hashing for fast large scale similarity search. In: Proceedings of the 22Nd ACM International Conference on Information & Knowledge Management [Internet]. ACM, New York, NY, USA (2013)

    Google Scholar 

  6. Zhang, D., Wang, J., Cai, D., Lu, J.: Self-taught Hashing for fast similarity search. In: Proceedings of the 33rd International ACM SIGIR Conference on Research and Development in Information Retrieval [Internet]. ACM, New York, NY, USA (2010)

    Google Scholar 

  7. Weiss, Y., Fergus, R., Torralba, A.: Multidimensional Spectral Hashing. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) Computer Vision ECCV 2012. Springer, Berlin (2012)

    Google Scholar 

  8. Zhuang Y, Liu Y, Wu F, Zhang Y, Shao J. Hypergaph Spectral Hashing for similarity search of social image. In: Proceedings of the 19th ACM International Conference on Multimedia [Internet]. ACM, New York, NY, USA (2011)

    Google Scholar 

  9. Li, P., Wang, M., Cheng, J., Xu, C., Lu, H.: Spectral Hashing with semantically consistent graph for image indexing. IEEE Trans Multimed. 15(1), 141–152 (2013)

    Article  Google Scholar 

  10. Bodó, Z., et al., Csató, L:. Linear spectral hashing. Neurocomputing 141, 117–123 (2014)

    Google Scholar 

  11. Yang, Y., Shen, F., Shen, H.T., et al.: Robust Discrete Spectral Hashing for Large-Scale Image Semantic Indexing (2016)

    Google Scholar 

  12. Bu, J., Tan, S., He, X.: Music recommendation by unified hypergraph: combining social media information and music content. In: ACM Multimedia (2010)

    Google Scholar 

  13. http://horatio.cs.nyu.edu/mit/tiny/data/

  14. https://www.cs.toronto.edu/~kriz/cifar.html

  15. Manning, P.R., Sch¨utze, H.: Introduction to Information Retrieval. Cambridge University Press (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Loubna Karbil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Singapore

About this paper

Cite this paper

Karbil, L., Daoudi, I., Medromi, H. (2017). A Comparative Experimental Study of Spectral Hashing. In: El-Azouzi, R., Menasche, D.S., Sabir, E., De Pellegrini, F., Benjillali, M. (eds) Advances in Ubiquitous Networking 2. UNet 2016. Lecture Notes in Electrical Engineering, vol 397. Springer, Singapore. https://doi.org/10.1007/978-981-10-1627-1_35

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-1627-1_35

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-1626-4

  • Online ISBN: 978-981-10-1627-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics