Nothing Special   »   [go: up one dir, main page]

Skip to main content

Fast Algorithm for 3D Local Feature Extraction Using Hahn and Charlier Moments

  • Conference paper
  • First Online:
Advances in Ubiquitous Networking 2 (UNet 2016)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 397))

Included in the following conference series:

Abstract

In this paper, we propose a fast algorithm to extract 3D local features from an object by using Hahn and Charlier moments. These moments have the property to compute local descriptors from a region of interest in an image. This can be realized by varying parameters of Hahn and Charlier polynomials. An algorithm based on matrix multiplication is used to speed up the computational time of 3D moments. The experiment results have illustrated the ability of Hahn and Charlier moments to extract the features from any region of 3D object. However, we have observed the superiority of Hahn moments in terms of reconstruction accuracy. In addition, the proposed algorithm produces a drastic reduction in the computational time as compared with straightforward method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Khotanzad, A., Hong, Y.: Invariant image recognition by Zernike moments. IEEE Trans. Pattern Anal. Mach. Intel. 12 5, 489–497 (1990)

    Article  Google Scholar 

  2. Belkasim, S., Shridhar, M., Ahmadi, M.: Pattern recognition with moment invariants: a comparative study and new results. Pattern Recogn. 24(12), 1117–1138 (1991)

    Article  Google Scholar 

  3. Flusser, J., Suk, T.: Pattern recognition by affine moment invariants. Pattern Recogn. 26(1), 167–174 (1993)

    Article  MathSciNet  Google Scholar 

  4. Hsu, H.S.: Moment preserving edge detection and its application to image data compression. Optim. Eng. 32(7), 1596–1608 (1993)

    Article  Google Scholar 

  5. Zhu, H., Shu, H., Zhou, J., Luo, L., Coatrieux, J.L.: Image Analysis by discrete orthogonal dual Hahn moments. Pattern Recogn. Lett. 28(13), 1688–1704 (2007)

    Article  Google Scholar 

  6. Hu, M.K.: Visual pattern recognition by moment invariants. IRE Trans. Inform. Theory 8(2), 179–187 (1962)

    Article  MATH  Google Scholar 

  7. Teague, M.R.: Image analysis via the general theory of moments. J. Opt. Soc. Am. 70(8), 920–930 (1980)

    Article  MathSciNet  Google Scholar 

  8. Mukundan, R., Ong, S.H., Lee, P.A.: Image analysis by Tchebichef moments. IEEE Trans. Image Process. 10(9), 1357–1364 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Yap, P.-T., Paramesran, R., Ong, S.-H.: Image analysis using hahn moments. IEEE Trans. Pattern Anal. Mach. Intell. 29(11), 2057–2062 (2007)

    Article  Google Scholar 

  10. Zhu, H., Liu, M., Shu, H., H. Zhang, H., Luo, L.: General form for obtaining discret orthogonal moments. IET Image Process. 4(5) 335–352 (2010)

    Google Scholar 

  11. Fergus, R., Perona, P., Zisserman, A.: Object class recognition by unsupervised scale-invariant learning. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recogn. 2, II-264−II-271 (2003)

    Google Scholar 

  12. Ke, Y., Sukthankar, R.: PCA-SIFT: a more distinctive representation for local image descriptors. In: IEEE Computer Society Conference CVPR, vol. 2, pp. II-506−II-513 (2004)

    Google Scholar 

  13. Mikolajczyk, K., Schmid, C.: Indexing based on scale invariant interest points. In: 8th IEEE ICCV, vol. 1. Pp. 525–531 (2001)

    Google Scholar 

  14. Chen, L., Feris, R., M. Turk, M: Efficient partial shape matching using Smith–Waterman algorithm. In: IEEE Comput. Soc. Conf. CVPRW, pp. 1–6 (2008)

    Google Scholar 

  15. Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE Trans. Pattern Anal. Mach. Intell. 27(10), 1615–1630 (2005)

    Article  Google Scholar 

  16. Yap, P.-T., Paramesran, R.: Image analysis by krawtcouk moments. IEEE Trans. Image Process. 12(11), 1367–1377 (2003)

    Article  MathSciNet  Google Scholar 

  17. Broggioa, D., et al.: Comparison of organs’ shapes with geometric and Zernike 3D moments. Comput. Methods Programs Biomed. 111(3), 740–754 (2013)

    Article  Google Scholar 

  18. Lin, Y-H.: 3D multimedia signal processing. In: Proceedings of the 20th ACM international conference on Multimedia., pp. 1445–1448 (2012)

    Google Scholar 

  19. Jiang. Y et al.: Gold nanoflowers for 3D volumetric molecular imaging of tumors by photoacoustic tomography. Nano Research 8(7), 2152–2161 (2015)

    Google Scholar 

  20. Venkataramana, A., Ananth Raj, P.: Recursive computation of forward krawtchouk moment transform using clenshaw’s recurrence formula. In: Third National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics (2011)

    Google Scholar 

  21. Ananth Raj, P., Venkataramana, A.: Fast computation of inverse krawtchouk moment transform using clenshaw’s recurrence formula. In: Third National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics (2011)

    Google Scholar 

  22. Princeton, Princeton Shape Benchmark, http://shape.cs.princeton.edu/benchmark/ (2013)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abderrahim Mesbah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Singapore

About this paper

Cite this paper

Mesbah, A., Berrahou, A., El Mallahi, M., Qjidaa, H. (2017). Fast Algorithm for 3D Local Feature Extraction Using Hahn and Charlier Moments. In: El-Azouzi, R., Menasche, D.S., Sabir, E., De Pellegrini, F., Benjillali, M. (eds) Advances in Ubiquitous Networking 2. UNet 2016. Lecture Notes in Electrical Engineering, vol 397. Springer, Singapore. https://doi.org/10.1007/978-981-10-1627-1_28

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-1627-1_28

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-1626-4

  • Online ISBN: 978-981-10-1627-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics