Abstract
In this paper, we propose a fast algorithm to extract 3D local features from an object by using Hahn and Charlier moments. These moments have the property to compute local descriptors from a region of interest in an image. This can be realized by varying parameters of Hahn and Charlier polynomials. An algorithm based on matrix multiplication is used to speed up the computational time of 3D moments. The experiment results have illustrated the ability of Hahn and Charlier moments to extract the features from any region of 3D object. However, we have observed the superiority of Hahn moments in terms of reconstruction accuracy. In addition, the proposed algorithm produces a drastic reduction in the computational time as compared with straightforward method.
Similar content being viewed by others
References
Khotanzad, A., Hong, Y.: Invariant image recognition by Zernike moments. IEEE Trans. Pattern Anal. Mach. Intel. 12 5, 489–497 (1990)
Belkasim, S., Shridhar, M., Ahmadi, M.: Pattern recognition with moment invariants: a comparative study and new results. Pattern Recogn. 24(12), 1117–1138 (1991)
Flusser, J., Suk, T.: Pattern recognition by affine moment invariants. Pattern Recogn. 26(1), 167–174 (1993)
Hsu, H.S.: Moment preserving edge detection and its application to image data compression. Optim. Eng. 32(7), 1596–1608 (1993)
Zhu, H., Shu, H., Zhou, J., Luo, L., Coatrieux, J.L.: Image Analysis by discrete orthogonal dual Hahn moments. Pattern Recogn. Lett. 28(13), 1688–1704 (2007)
Hu, M.K.: Visual pattern recognition by moment invariants. IRE Trans. Inform. Theory 8(2), 179–187 (1962)
Teague, M.R.: Image analysis via the general theory of moments. J. Opt. Soc. Am. 70(8), 920–930 (1980)
Mukundan, R., Ong, S.H., Lee, P.A.: Image analysis by Tchebichef moments. IEEE Trans. Image Process. 10(9), 1357–1364 (2001)
Yap, P.-T., Paramesran, R., Ong, S.-H.: Image analysis using hahn moments. IEEE Trans. Pattern Anal. Mach. Intell. 29(11), 2057–2062 (2007)
Zhu, H., Liu, M., Shu, H., H. Zhang, H., Luo, L.: General form for obtaining discret orthogonal moments. IET Image Process. 4(5) 335–352 (2010)
Fergus, R., Perona, P., Zisserman, A.: Object class recognition by unsupervised scale-invariant learning. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recogn. 2, II-264−II-271 (2003)
Ke, Y., Sukthankar, R.: PCA-SIFT: a more distinctive representation for local image descriptors. In: IEEE Computer Society Conference CVPR, vol. 2, pp. II-506−II-513 (2004)
Mikolajczyk, K., Schmid, C.: Indexing based on scale invariant interest points. In: 8th IEEE ICCV, vol. 1. Pp. 525–531 (2001)
Chen, L., Feris, R., M. Turk, M: Efficient partial shape matching using Smith–Waterman algorithm. In: IEEE Comput. Soc. Conf. CVPRW, pp. 1–6 (2008)
Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE Trans. Pattern Anal. Mach. Intell. 27(10), 1615–1630 (2005)
Yap, P.-T., Paramesran, R.: Image analysis by krawtcouk moments. IEEE Trans. Image Process. 12(11), 1367–1377 (2003)
Broggioa, D., et al.: Comparison of organs’ shapes with geometric and Zernike 3D moments. Comput. Methods Programs Biomed. 111(3), 740–754 (2013)
Lin, Y-H.: 3D multimedia signal processing. In: Proceedings of the 20th ACM international conference on Multimedia., pp. 1445–1448 (2012)
Jiang. Y et al.: Gold nanoflowers for 3D volumetric molecular imaging of tumors by photoacoustic tomography. Nano Research 8(7), 2152–2161 (2015)
Venkataramana, A., Ananth Raj, P.: Recursive computation of forward krawtchouk moment transform using clenshaw’s recurrence formula. In: Third National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics (2011)
Ananth Raj, P., Venkataramana, A.: Fast computation of inverse krawtchouk moment transform using clenshaw’s recurrence formula. In: Third National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics (2011)
Princeton, Princeton Shape Benchmark, http://shape.cs.princeton.edu/benchmark/ (2013)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer Science+Business Media Singapore
About this paper
Cite this paper
Mesbah, A., Berrahou, A., El Mallahi, M., Qjidaa, H. (2017). Fast Algorithm for 3D Local Feature Extraction Using Hahn and Charlier Moments. In: El-Azouzi, R., Menasche, D.S., Sabir, E., De Pellegrini, F., Benjillali, M. (eds) Advances in Ubiquitous Networking 2. UNet 2016. Lecture Notes in Electrical Engineering, vol 397. Springer, Singapore. https://doi.org/10.1007/978-981-10-1627-1_28
Download citation
DOI: https://doi.org/10.1007/978-981-10-1627-1_28
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-10-1626-4
Online ISBN: 978-981-10-1627-1
eBook Packages: EngineeringEngineering (R0)