Abstract
In this paper, optimal control of coupled tank systems has been proposed using H∞ fractional-order controllers. Controller tuning has been posed as multi-objective mixed sensitivity minimization problem for tuning the fractional-order PID (FOPID) controllers and multi-objective variants of bat algorithm (MOBA) and differential evolution (MODE) has been used for optimization. Use of fractional-order controllers provides better characterization of dynamics of the process and their tuning using multi-objective optimization helps in attaining the robust trade-offs between sensitivity and complementary sensitivity. Both the FOPID controllers tuned with MOBA and MODE present robust behavior to external disturbance and the compared results show that MOBA-tuned controller presents efficient tracking of the reference.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Reynoso-Meza, G., et al.: Controller tuning using evolutionary multi-objective optimisation: current trends and applications. Control Eng. Pract. 28, 58–73 (2014). doi:10.1016/j.conengprac.2014.03.003
A˚ström, K.J., Kumar, P.R.: Control: a perspective. Automatica 50(1), 3–43 (2014). ISSN 0005-1098, doi:10.1016/j.automatica.2013.10.012
Chen, Y., Petráš, I., Xue, D.: Fractional order control-a tutorial. In: American Control Conference, 2009. ACC’09. IEEE (2009). doi:10.1109/ACC.2009.5160719
Podlubny, I.: Fractional-order systems and PID controllers. IEEE Trans. Autom. Control 44(1), 208–213 (1999). doi:10.1109/9.739144
Abu Khadra, F., Abu Qudeiri, J.: Second order sliding mode control of the coupled tanks system. Math. Probl. Eng. (2015)
Kumar, A., Vashishth, M., Rai, L.: Liquid level control of coupled tank system using Fractional PID controller. Int. J. Emerg. Trends Electr. Electron. 3(1) (2013). 2320-9569
Katal, N., Kumar, P., Narayan, S.: Optimal PID controller for coupled-tank liquid-level control system using bat algorithm. In: International Conference on Power, Control and Embedded Systems (ICPCES), IEEE (2014). doi:10.1109/ICPCES.2014.7062818
Singh, S.K., Katal, N., Modani, S.G.: Multi-objective optimization of PID controller for coupled-tank liquid-level control system using genetic algorithm. In: Proceedings of the Second International Conference on Soft Computing for Problem Solving (SocProS 2012), December 28–30, 2012. Springer India (2014). doi:10.1007/978-81-322-1602-5_7
Xu, J.-X., Hang, C.-C., Liu, C.: Parallel structure and tuning of a fuzzy PID controller. Automatica 36(5), 673–684 (2000). doi:10.1016/S0005-1098(99)00192-2
Tepljakov, A., Petlenkov, E., Belikov, J.: FOMCON: fractional-order modeling and control toolbox for MATLAB. In: Proceedings of 18th International Mixed Design of Integrated Circuits and Systems (MIXDES) Conference (2011)
Maciejowski, J.M.: Multivariate feedback design (1989)
Yang, X.-S.: Bat algorithm for multi-objective optimisation. International Journal of Bio-Inspired Computation 3(5), 267–274 (2011). doi:10.1504/IJBIC.2011.042259
Storn, R., Price, K.: Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11(4), 341–359 (1997). doi:10.1023/A:1008202821328
Okdem, S.: A simple and global optimization algorithm for engineering problems: differential evolution algorithm. Turk J. Elec. Eng. 12(1) (2004)
Storn, R.: Differential Evolution Research–Trends and Open Questions. Advances in Differential Evolution. Springer, Berlin, pp. 1–31 (2008). doi:10.1007/978-3-540-68830-3_1
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer Science+Business Media Singapore
About this paper
Cite this paper
Katal, N., Narayan, S. (2016). Multi-objective Optimization-Based Design of Robust Fractional-Order PIλDμ Controller for Coupled Tank Systems. In: Pant, M., Deep, K., Bansal, J., Nagar, A., Das, K. (eds) Proceedings of Fifth International Conference on Soft Computing for Problem Solving. Advances in Intelligent Systems and Computing, vol 437. Springer, Singapore. https://doi.org/10.1007/978-981-10-0451-3_4
Download citation
DOI: https://doi.org/10.1007/978-981-10-0451-3_4
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-10-0450-6
Online ISBN: 978-981-10-0451-3
eBook Packages: EngineeringEngineering (R0)