Abstract
Saliency cuts aims to segment salient objects from a given saliency map. The existing saliency cuts methods focus on dealing with RGB images and videos, but ignore the exploration of depth cue, which limit their performance on RGB-D images. In this paper, we propose a novel saliency cuts method on RGB-D images, which utilizes both color and depth cues to segment salient objects. Given a saliency map, we first generate segmentation seeds with adaptive triple thresholding. Next, we extend GrabCut by combining depth cue, and use it to generate a roughly labeled map. Finally, we refine the boundary of the salient object adaptively, and produce an accurate binary mask. To the best of our knowledge, this method is the first specific saliency cuts method for RGB-D images. We validated the proposed method on the largest RGB-D image dataset for salient object detection, named NJU2000. The experimental results demonstrate that our method outperforms the state-of-the-art methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Fu, Y., Cheng, J., Li, Z., Lu, H.: Saliency cuts: an automatic approach to object segmentation. In: CVPR, pp. 1–4 (2012)
Athanasiadis, T., et al.: Integrating image segmentation and classification for fuzzy knowledge-based multimedia indexing. In: Huet, B., Smeaton, A., Mayer-Patel, K., Avrithis, Y. (eds.) MMM 2009. LNCS, vol. 5371, pp. 263–274. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-92892-8_29
Hong, R., Zhang, L., Zhang, C., Zimmermann, R.: Flickr circles: aesthetic tendency discovery by multi-view regularized topic modeling. TMM 18, 1555–1567 (2016)
Nie, L., Yan, S., Wang, M., Hong, R., Chua, T.S.: Harvesting visual concepts for image search with complex queries. In: MM, pp. 59–68. ACM (2012)
Hong, R., Hu, Z., Wang, R., Wang, M., Tao, D.: Multi-view object retrieval via multi-scale topic models. TIP 25, 5814–5827 (2016)
Hong, R., Yang, Y., Wang, M., Hua, X.S.: Learning visual semantic relationships for efficient visual retrieval. TBD 1, 152–161 (2017)
Li, Z., Tang, J.: Weakly supervised deep matrix factorization for social image understanding. TIP 26, 276–288 (2016)
Sang, J., Xu, C., Liu, J.: User-aware image tag refinement via ternary semantic analysis. TMM 14, 883–895 (2012)
Nie, L., Wang, M., Zha, Z., Chua, T.S.: Oracle in image search: a content-based approach to performance prediction. TOIS 30, 13:1–13:23 (2012)
Tang, J., Hong, R., Yan, S., Chua, T.S., Qi, G.J., Jain, R.: Image annotation by kNN-sparse graph-based label propagation over noisily tagged web images. TIST 2, 14 (2011)
Nie, L., Wang, M., Zha, Z., Li, G., Chua, T.S.: Multimedia answering: enriching text QA with media information. In: SIGIR, pp. 695–704. ACM (2011)
Xu, N., Bansal, R., Ahuja, N.: Object segmentation using graph cuts based active contours. In: CVPR, vol. 2, pp. II–46–53 (2007)
Shi, J., Malik, J.: Normalized cuts and image segmentation. TPAMI 22, 888–905 (2000)
Song, H., Liu, Z., Du, H., Sun, G., Le, M.O., Ren, T.: Depth-aware salient object detection and segmentation via multiscale discriminative saliency fusion and bootstrap learning. TIP PP, 1 (2017)
Ye, L., Liu, Z., Li, L., Shen, L., Bai, C., Wang, Y.: Salient object segmentation via effective integration of saliency and objectness. TMM PP, 1 (2017)
Hou, X., Zhang, L.: Saliency detection: a spectral residual approach. In: CVPR, pp. 1–8 (2007)
Guo, J., Ren, T., Huang, L., Bei, J.: Saliency detection on sampled images for tag ranking. Multimed. Syst. 1–13 (2017)
Otsu, N.: A threshold selection method from gray-level histograms. SMC 9, 62–66 (2007)
Achanta, R., Hemami, S., Estrada, F., Susstrunk, S.: Frequency-tuned salient region detection. In: CVPR, pp. 1597–1604 (2009)
Li, S., Ju, R., Ren, T., Wu, G.: Saliency cuts based on adaptive triple thresholding. In: ICIP, pp. 4609–4613 (2015)
Cheng, M.M., Zhang, G.X., Mitra, N.J., Huang, X., Hu, S.M.: Global contrast based salient region detection. In: CVPR, pp. 409–416 (2011)
Banica, D., Agape, A., Ion, A., Sminchisescu, C.: Video object segmentation by salient segment chain composition. In: ICCV Workshops, pp. 283–290 (2013)
Ju, R., Liu, Y., Ren, T., Ge, L., Wu, G.: Depth-aware salient object detection using anisotropic center-surround difference. SPIC 38, 115–126 (2015)
Rother, C., Kolmogorov, V., Blake, A.: “GrabCut”: interactive foreground extraction using iterated graph cuts. TOG 23, 309–314 (2004)
Blake, A., Rother, C., Brown, M., Perez, P., Torr, P.: Interactive image segmentation using an adaptive GMMRF model. In: Pajdla, T., Matas, J. (eds.) ECCV 2004. LNCS, vol. 3021, pp. 428–441. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24670-1_33
Ge, L., Ju, R., Ren, T., Wu, G.: Interactive RGB-D image segmentation using hierarchical graph cut and geodesic distance. In: Ho, Y.-S., Sang, J., Ro, Y.M., Kim, J., Wu, F. (eds.) PCM 2015. LNCS, vol. 9314, pp. 114–124. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24075-6_12
Liu, J., Ren, T., Wang, Y., Zhong, S.H., Bei, J., Chen, S.: Object proposal on RGB-D images via elastic edge boxes. NEUCOM 236, 134–146 (2017)
Feng, D., Barnes, N., You, S., Mccarthy, C.: Local background enclosure for RGB-D salient object detection. In: CVPR, pp. 2343–2350 (2016)
Borji, A., Cheng, M.M., Jiang, H., Li, J.: Salient object detection: a benchmark. TIP 24, 5706–5722 (2015)
Acknowledgments
This work is supported by National Science Foundation of China (61321491, 61202320), National Undergraduate Innovation Project (G201610284069), and Collaborative Innovation Center of Novel Software Technology and Industrialization.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Wang, Y., Huang, L., Ren, T., Zhang, Y. (2018). Saliency Cuts on RGB-D Images. In: Huet, B., Nie, L., Hong, R. (eds) Internet Multimedia Computing and Service. ICIMCS 2017. Communications in Computer and Information Science, vol 819. Springer, Singapore. https://doi.org/10.1007/978-981-10-8530-7_43
Download citation
DOI: https://doi.org/10.1007/978-981-10-8530-7_43
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-10-8529-1
Online ISBN: 978-981-10-8530-7
eBook Packages: Computer ScienceComputer Science (R0)