Nothing Special   »   [go: up one dir, main page]

Skip to main content

Android Malware Detection Using Local Binary Pattern and Principal Component Analysis

  • Conference paper
  • First Online:
Data Science (ICPCSEE 2017)

Abstract

Nowadays, analysis methods based on big data have been widely used in malicious software detection. Since Android has become the dominator of smartphone operating system market, the number of Android malicious applications are increasing rapidly as well, which attracts attention of malware attackers and researchers alike. Due to the endless evolution of the malware, it is critical to apply the analysis methods based on machine learning to detect malwares and stop them from leakaging our privacy information. In this paper, we propose a novel Android malware detection method based on binary texture feature recognition by Local Binary Pattern and Principal Component Analysis, which can visualize malware and detect malware accurately. Also, our method analyzes malware binary directly without any decompiler, sandbox or virtual machines, which avoid time and resource consumption caused by decompiler or monitor in this process. Experimentation on 5127 benigns and 5560 malwares shows that we obtain a detection accuracy of 90%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. IDC: Smartphone OS Market Share (2016) Q3. http://www.idc.com/promo/smartphone-market-share/os

  2. Felt, A.P., Finifter, M., Chin, E., Hanna, S., Wagner, D.: A survey of mobile malware in the wild. In: ACM Workshop on Security and Privacy in Smartphones and Mobile Devices, pp. 3–14 (2011)

    Google Scholar 

  3. Grace, M., Zhou, Y., Wang, Z., Jiang, X.: Systematic detection of capability leaks in stock android smartphones. In: Nineteenth Annual Network & Distributed System Security Symposium Ndss12 Isoc (2012)

    Google Scholar 

  4. Wang, R., Xing, L., Wang, X., Chen, S.: Unauthorized origin crossing on mobile platforms: threats and mitigation. In: 2013 ACM SIGSAC Conference on Computer & Communications Security, pp. 635–646 (2013)

    Google Scholar 

  5. Zhou, Y., Jiang, X.: Dissecting android malware: characterization and evolution. In: 2012 IEEE Symposium on Security and Privacy, pp. 95–109 (2012)

    Google Scholar 

  6. Zhou, Y., Wang, Z., Zhou, W., Jiang, X.: Hey, you, get off my market: detecting malicious apps in official and alternative android markets. In: Nineteenth Annual Network & Distributed System Security Symposium Ndss12 Isoc (2012)

    Google Scholar 

  7. Wei, F., Roy, S., Ou, X., Robby: Amandroid: a precise and general inter-component data flow analysis framework for security vetting of android apps. In: 2014 ACM SIGSAC Conference on Computer and Communications Security, pp. 1329–1341 (2014)

    Google Scholar 

  8. Moser, A., Kruegel, C., Kirda, E.: Limits of static analysis for malware detection. In: Twenty-Third Annual Computer Security Applications Conference (ACSAC 2007), pp. 421–430 (2007)

    Google Scholar 

  9. Nataraj, L., Manjunath, B.S.: SPAM: signal processing to analyze malware. J. IEEE Sig. Process. Mag. 33(2), 105–117 (2016)

    Google Scholar 

  10. Nataraj, L., Yegneswaran, V., Porras, P., Zhang, J.: A comparative assessment of malware classification using binary texture analysis and dynamic analysis. In: 4th ACM Workshop on Security and Artificial Intelligence, pp. 21–30 (2011)

    Google Scholar 

  11. Olivia, A., Torralba, A.: Modeling the shape of a scene: a holistic representation of the spatial envelope. J. Comput. Vis. 42(3), 145–175 (2001)

    Article  MATH  Google Scholar 

  12. Rashidi, B., Fung, C., Vu, T.: RecDroid: a resource access permission control portal and recommendation service for smartphone users. In: ACM MobiCom Workshop on Security and Privacy in Mobile Environments, pp. 13–18 (2014)

    Google Scholar 

  13. Felt, A.P., Chin, E., Hanna, S., Song, D., Wagner, D.: Android permissions demystified. In: 18th ACM Conference on Computer and Communications Security, pp. 627–638 (2011)

    Google Scholar 

  14. Anderson, B., et al.: Improving malware classification: bridging the static/dynamic gap. In: 5th ACM Workshop on Security and Artificial Intelligence, pp. 3–14 (2012)

    Google Scholar 

  15. Raman, K., et al.: Selecting features to classify malware. In: InfoSec Southwest, pp. 1–5 (2012)

    Google Scholar 

  16. Enck, W., Ongtang, M., McDaniel, P.: On lightweight mobile phone application certification. In: 16th ACM Conference on Computer and Communications Security (CCS), pp. 235–245 (2009)

    Google Scholar 

  17. Zhang, J., et al.: Malware variant detection using opcode image recognition with small training sets. In: 2016 25th International Conference on Computer Communication and Networks (ICCCN), pp. 1–9 (2016)

    Google Scholar 

  18. Grace, M., et al.: Riskranker: scalable and accurate zero-day android malware detection. In: 10th International Conference on Mobile Systems, Applications, and Services (MOBISYS), pp. 281–294 (2012)

    Google Scholar 

  19. Aafer, Y., Du, W., Yin, H.: DroidAPIMiner: mining API-level features for robust malware detection in android. In: Zia, T., Zomaya, A., Varadharajan, V., Mao, M. (eds.) SecureComm 2013. LNICSSITE, vol. 127, pp. 86–103. Springer, Cham (2013). doi:10.1007/978-3-319-04283-1_6

    Chapter  Google Scholar 

  20. Kong, D., et al.: Discriminant malware distance learning on structural information for automated malware classification. In: 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1357–1365 (2013)

    Google Scholar 

  21. Enck, W., et al.: Taintdroid: an information-flow tracking system for realtime privacy monitoring on smartphones. In: 9th USENIX Symposium on Operating Systems Design and Implementation (OSDI), pp. 393–407 (2010)

    Google Scholar 

  22. Burguera, I., Zurutuza, U., Nadjm-Tehrani, S.: Crowdroid: behavior-based malware detection system for android. In: 1st ACM Workshop on Security and Privacy in Smartphones and Mobile Devices, pp. 15–26 (2011)

    Google Scholar 

  23. Kwong, L., Yin, Y.H.: Droidscope: seamlessly reconstructing the OS and Dalvik semantic views for dynamic android malware analysis. In: 21st USENIX Conference on Security Symposium USENIX Association, pp. 1–16 (2012)

    Google Scholar 

  24. Sophos mobile security threat report, mobile world congress. https://www.sophos.com/en-us/press-office/press-releases/2014/02/mobileworldcongress2014.aspx

  25. Nataraj, L., Karthikeyan, S., Jacob, G., Manjunath, B.: Malware images: visualization and autmatic classification. In: International Symposium on Visualization for Cyber Security, pp. 1–7 (2011)

    Google Scholar 

  26. Arp, D., Spreitzenbarth, M., Huebner, M., Gascon, H., Rieck, K.: Drebin: efficient and explainable detection of android malware in your pocket. In: 21th Annual Network and Distributed System Security Symposium (NDSS) (2014)

    Google Scholar 

  27. Spreitzenbarth, M., Echtler, F., Schreck, T., Freling, F., Hoffmann, J.: MobileSandbox: looking deeper into android applications. In: 28th International ACM Symposium on Applied Computing (SAC) (2013)

    Google Scholar 

  28. Ojala, T., Pietikäinen, M., Mäenpää, T.: Gray scale and rotation invariant texture classification with local binary patterns. In: Vernon, D. (ed.) ECCV 2000. LNCS, vol. 1842, pp. 404–420. Springer, Heidelberg (2000). doi:10.1007/3-540-45054-8_27

    Chapter  Google Scholar 

  29. Zhang, J., et al.: Malware variant detection using opcode image recognition. In: 2016 IEEE 22nd International Conference on Parallel and Distributed Systems (ICPADS), pp. 1175–1180 (2016)

    Google Scholar 

Download references

Acknowledgement

This work is partially supported by the National Science foundation of China under Grant No. 61472131, No. 61300218 and No. 61472132. The Natural Science Foundation of Hunan Province under Grant No. 2017JJ2292 and Outstanding Youth Research Project of Provincial Education Department of Hunan under Grant No. 17B030. Science and Technology Key Projects of Hunan Province (2015TP1004, 2015SK2087, 2015JC1001, 2016JC2012).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zheng Qin or Jinxin Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Wu, Q., Qin, Z., Zhang, J., Yin, H., Yang, G., Hu, K. (2017). Android Malware Detection Using Local Binary Pattern and Principal Component Analysis. In: Zou, B., Li, M., Wang, H., Song, X., Xie, W., Lu, Z. (eds) Data Science. ICPCSEE 2017. Communications in Computer and Information Science, vol 727. Springer, Singapore. https://doi.org/10.1007/978-981-10-6385-5_23

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6385-5_23

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6384-8

  • Online ISBN: 978-981-10-6385-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics