Nothing Special   »   [go: up one dir, main page]

Skip to main content

Template Protection Based on Chaotic Map for Face Recognition

  • Conference paper
  • First Online:
Data Science (ICPCSEE 2017)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 727))

Abstract

With the widespread deployment of biometric recognition, personal data security and privacy are attracted more and more attentions. A crucial privacy issue is how to ensure the security of user template. This paper proposes a novel template protection algorithm for face recognition based on chaotic map. Each face template is corresponding to different chaotic sequence produced by system master key and user identification number. The order of chaotic sequence controls the substitution index of face template. Experiment results on facial FERET database show that our algorithm can significantly improve the recognition performance and ensure the security of face template.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Jain, A.K., Nandakumar, K., Nagar, A.: Biometric template security. EURASIP J. Adv. Sig. Process. 2008, 1–17 (2008)

    Article  Google Scholar 

  2. Nandakumar, K., Pankanti, S., Jain, A.K.: Fingerprint-based fuzzy vault implementation and performance. IEEE Trans. Inf. Forensics Secur. 2(4), 744–757 (2007)

    Article  Google Scholar 

  3. Kocarev, L., Lian, S.: Chaos-Based Cryptography Theory. Algorithms and Applications. Springer, Heidelberg (2011). doi:10.1007/978-3-642-20542-2

    Book  MATH  Google Scholar 

  4. Abd-El-Hafiz, S.K., Radwan, A.G., AbdElHaleem, S.H., Barakat, M.L.: A fractal-based image encryption system. IET Image Process 8(12), 742–752 (2014)

    Article  Google Scholar 

  5. Juels, A., Sudan, M.: A fuzzy vault scheme. In: IEEE International Symposium on Information Theory, Switzerland, pp. 408–413 (2002)

    Google Scholar 

  6. Uludag, U., Pankanti, S., Jain, A.K.: Fuzzy vault for fingerprints. In: Kanade, T., Jain, A., Ratha, N.K. (eds.) AVBPA 2005. LNCS, vol. 3546, pp. 310–319. Springer, Heidelberg (2005). doi:10.1007/11527923_32

    Chapter  Google Scholar 

  7. Barakat, M.L., Mansingka, A.S., Radwan, A.G., Salama, K.N.: Hardware stream cipher with controllable chaos generator for colour image encryption. IET Image Process 8(1), 33–43 (2014)

    Article  Google Scholar 

  8. You, L., Wang, Y., Chen, Y., Deng, Q., Zhang, H.: A novel key sharing fuzzy vault scheme. KSII Trans. Internet Inf. Syst. 10, 453–460 (2012)

    Google Scholar 

  9. Lafkin, M., Mikram, M., Ghouzali, S.: Biometric cryptosystems based fuzzy commitment scheme: a security evaluation. Int. Arab J. Inf. Technol. 13(4), 443–449 (2016)

    Google Scholar 

  10. Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.: Fuzzy extractors: how to generate strong keys from biometrics and other noisy data. SIAM J. Comput. 38(1), 97–139 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Nagar, A., Nandakumar, K., Jain, A.K.: Multibiometric cryptosystems based on feature level fusion. IEEE Trans. Inf. Forensics Secur. 7(1), 255–268 (2012)

    Article  Google Scholar 

  12. Turk, M., Pentland, A.: Face recognition using eigenfaces. In: IEEE Transaction on Pattern Analysis and Machine Intelligence, pp. 586–591 (1991)

    Google Scholar 

  13. Song, X., Wang, S., El-Latif, A.A.A., Niu, X.: Quantum image encryption based on restricted geometric and color transformations. Quantum Inf. Process. 13(8), 1765–1787 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Science Foundation of China (nos. 61201399, 61501176, 61601174), and Startup Fund for Doctor of Heilongjiang University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhifang Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Dong, J., Meng, X., Chen, M., Wang, Z., Tang, L. (2017). Template Protection Based on Chaotic Map for Face Recognition. In: Zou, B., Li, M., Wang, H., Song, X., Xie, W., Lu, Z. (eds) Data Science. ICPCSEE 2017. Communications in Computer and Information Science, vol 727. Springer, Singapore. https://doi.org/10.1007/978-981-10-6385-5_21

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6385-5_21

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6384-8

  • Online ISBN: 978-981-10-6385-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics