Nothing Special   »   [go: up one dir, main page]

Skip to main content

Picking from Clutter: An Object Segmentation Method for Robot Grasping

  • Conference paper
  • First Online:
Cognitive Systems and Signal Processing (ICCSIP 2016)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 710))

Included in the following conference series:

  • 2177 Accesses

Abstract

Picking in a unstructured environment is an important task for the further autonomy of the robot manipulation in real applications. A primary challenge for the task is to identify the object from the cluttered sensor readings. In this paper, a real time segmentation algorithm is proposed to partition the scene into objects using only depth and geometry information. We employ a graph to model the scene, in which the surfaces are regarded as nodes while the geometric relations between surfaces as edges. The relations are represented by the convexity and connectivity of the two neighbor surfaces. Upon the segmentation result, a measure was developed for robot grasping proposal suggestion. Our method has advantages over the RGB and learning based methods as it is robust against the illumination variation and does not require the collection of samples, thus achieving more convenient deployment. The method was evaluated on public datasets to validate its feasibility and effectiveness, demonstrating better performance compared to other depth information based image segmentation method. Besides, a real-world robot grasping experiment is conducted to investigate the possibility of on-site production. abstract environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Süsstrunk, S.: SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2274–2282 (2012)

    Article  Google Scholar 

  2. Anguelov, D., Taskar, B., Chatalbashev, V., Koller, D., Gupta, D., Heitz, G., Ng, A.: Discriminative learning of Markov random fields for segmentation of 3D scan data. In: IEEE Computer Society Conference on Computer Vision Pattern Recognition, vol. 2, pp. 169–176 (2005)

    Google Scholar 

  3. Barber, B.C., Dobkin, D., Huhdanpaa, H.: The quickhull algorithm for convex hull (2015)

    Google Scholar 

  4. Bay, H., Tuytelaars, T., Gool, L.V.: Surf: speeded up robust features. Comput. Vis. Image Underst. 110(3), 404–417 (2006)

    Google Scholar 

  5. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Semantic image segmentation with deep convolutional nets and fully connected CRFs. Comput. Sci. 4, 357–361 (2014)

    Google Scholar 

  6. Collet, A., Martinez, M., Srinivasa, S.S.: The moped framework: object recognition and pose estimation for manipulation. Int. J. Robot. Res. 30(10), 1284–1306 (2011)

    Article  Google Scholar 

  7. Couprie, C., Farabet, C., Najman, L., Lecun, Y.: Indoor semantic segmentation using depth information. Eprint arXiv (2013)

    Google Scholar 

  8. Ecins, A., Fermuller, C., Aloimonos, Y.: Cluttered scene segmentation using the symmetry constraint. In: IEEE International Conference on Robotics and Automation (2016)

    Google Scholar 

  9. Felzenszwalb, P., Huttenlocher, D.: Efficient graph-based segmentation algorithm. IJCV 59, 167–181 (2014)

    Article  Google Scholar 

  10. Gabow, H.N., Tarjan, R.E.: A linear-time algorithm for a special case of disjoint set union. J. Comput. Syst. Sci. 30(2), 209–221 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gupta, S., Girshick, R., Arbeláez, P., Malik, J.: Learning rich features from RGB-D images for object detection and segmentation. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8695, pp. 345–360. Springer, Cham (2014). doi:10.1007/978-3-319-10584-0_23

    Google Scholar 

  12. Henry, P., Krainin, M., Herbst, E., Ren, X., Fox, D.: RGB-D mapping: using kinect-style depth cameras for dense 3D modeling of indoor environments. Int. J. Robot. Res. 31(5), 647–663 (2012)

    Article  Google Scholar 

  13. Kappler, D., Bohg, J., Schaal, S.: Leveraging big data for grasp planning. In: IEEE International Conference on Robotics and Automation, pp. 4304–4311 (2015)

    Google Scholar 

  14. Lenz, I., Lee, H., Saxena, A.: Deep learning for detecting robotic grasps. Int. J. Robot. Res. 34(4–5), 705–724 (2013)

    Google Scholar 

  15. Levine, S., Pastor, P., Krizhevsky, A., Quillen, D.: Learning hand-eye coordination for robotic grasping with deep learning and large-scale data collection. In: Kulić, D., Nakamura, Y., Khatib, O., Venture, G. (eds.) ISER 2016. Springer, Cham (2016)

    Google Scholar 

  16. Liao, Y., Kodagoda, S., Wang, Y., Shi, L., Liu, Y.: Understand scene categories by objects: a semantic regularized scene classifier using convolutional neural networks. In: 2016 IEEE International Conference on Robotics and Automation (ICRA), pp. 2318–2325. IEEE (2016)

    Google Scholar 

  17. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(60), 91–110 (2004)

    Article  Google Scholar 

  18. Moosmann, F., Pink, O., Stiller, C.: Segmentation of 3D lidar data in non-flat urban environments using a local convexity criterion. In: 2009 IEEE in Intelligent Vehicles Symposium, pp. 215–220 (2009)

    Google Scholar 

  19. Rao, D., Le, Q.V., Phoka, T., Quigley, M., Sudsang, A., Ng, A.Y.: Grasping novel objects with depth segmentation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2578–2585 (2010)

    Google Scholar 

  20. Richtsfeld, A., Mörwald, T., Prankl, J., Zillich, M., Vincze, M.: Segmentation of unknown objects in indoor environments. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4791–4796. IEEE (2012)

    Google Scholar 

  21. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)

    Google Scholar 

  22. Stein, S.C., Schoeler, M., Papon, J., Worgotter, F.: Object partitioning using local convexity. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 304–311 (2014)

    Google Scholar 

  23. Sung, J., Jin, S.H., Saxena, A.: Robobarista: object part based transfer of manipulation trajectories from crowd-sourcing in 3D pointclouds. arXiv preprint arXiv:1504.03071 (2015)

  24. Uckermann, A., Haschke, R., Ritter, H.: Real-time 3D segmentation of cluttered scenes for robot grasping, pp. 198–203 (2012)

    Google Scholar 

  25. Vedaldi, A., Soatto, S.: Quick shift and kernel methods for mode seeking. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5305, pp. 705–718. Springer, Heidelberg (2008). doi:10.1007/978-3-540-88693-8_52

    Chapter  Google Scholar 

  26. Wang, Y., Huang, S., Xiong, R., Wu, J.: A framework for multi-session RGBD slam in low dynamic workspace environment. CAAI Trans. Intell. Technol. 1, 90–103 (2016)

    Article  Google Scholar 

Download references

Acknowledgment

This work is supported by the National Nature Science Foundation of China (Grant No. NSFC: U1609210, 61473258 and U1509210).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rong Xiong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Chen, Y., Wang, Y., Hu, J., Xiong, R. (2017). Picking from Clutter: An Object Segmentation Method for Robot Grasping. In: Sun, F., Liu, H., Hu, D. (eds) Cognitive Systems and Signal Processing. ICCSIP 2016. Communications in Computer and Information Science, vol 710. Springer, Singapore. https://doi.org/10.1007/978-981-10-5230-9_35

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-5230-9_35

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-5229-3

  • Online ISBN: 978-981-10-5230-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics