Nothing Special   »   [go: up one dir, main page]

Skip to main content

Many-Objective Optimization for Virtual Machine Placement in Cloud Computing

  • Chapter
  • First Online:
Research Advances in Cloud Computing

Abstract

Resource allocation in cloud computing datacenters presents several research challenges, where the Virtual Machine Placement (VMP) is one of the most studied problems with several possible formulations considering a large number of existing optimization criteria. This chapter presents the main contributions that studied for the first time Many-Objective VMP (MaVMP) problems for cloud computing environments. In this context, two variants of MaVMP problems were formulated and different algorithms were designed to effectively address existing research challenges associated to the resolution of Many-Objective Optimization Problems (MaOPs). Experimental results proved the correctness of the presented algorithms, its effectiveness in solving particular associated challenges and its capabilities to solve problem instances with large numbers of physical and virtual machines for: (1) MaVMP for initial placement of VMs (static) and (2) MaVMP with reconfiguration of VMs (semi-dynamic). Finally, open research problems for the formulation and resolution of MaVMP problems for cloud computing (dynamic) are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://aws.amazon.com/ec2/faqs.

  2. 2.

    http://aws.amazon.com/ec2/instance-types.

  3. 3.

    https://github.com/flopezpires/iMaVMP.

  4. 4.

    https://github.com/dihara/MaVMP.

References

  1. López-Pires, F., & Barán, B. (2015). Virtual machine placement literature review. http://arxiv.org/abs/1506.01509.

  2. López-Pires, F., & Barán, B. (2015). A virtual machine placement taxonomy. In Proceedings of the 2015 IEEE/ACM 15th International Symposium on Cluster, Cloud and Grid Computing. IEEE Computer Society.

    Google Scholar 

  3. Cheng, J., Yen, G. G., & Zhang, G. (2014, October). A many-objective evolutionary algorithm based on directional diversity and favorable convergence. In 2014 IEEE International Conference on Systems, Man and Cybernetics (SMC) (pp. 2415–2420).

    Google Scholar 

  4. Farina, M., & Amato, P. (2002). On the optimal solution definition for many-criteria optimization problems. In Proceedings of the NAFIPS-FLINT International Conference (pp. 233–238).

    Google Scholar 

  5. von Lücken, C., Barán, B., & Brizuela, C. (2014). A survey on multi-objective evolutionary algorithms for many-objective problems. Computational Optimization and Applications, 1–50.

    Google Scholar 

  6. Guzek, M., Bouvry, P., & Talbi, E.-G. (2015). A survey of evolutionary computation for resource management of processing in cloud computing. Computational Intelligence Magazine, IEEE, 10(2), 53–67.

    Article  Google Scholar 

  7. Ihara, D., López-Pires, F., & Barán, B. (2015). Many-objective virtual machine placement for dynamic environments. In Proceedings of the 2015 IEEE/ACM 8th International Conference on Utility and Cloud Computing. IEEE Computer Society.

    Google Scholar 

  8. López-Pires, F., & Barán, B. (2015). A many-objective optimization framework for virtualized datacenters. In Proceedings of the 2015 5th International Conference on Cloud Computing and Service Science (pp. 439–450).

    Google Scholar 

  9. López-Pires, F., & Barán, B. (2017). Cloud computing resource allocation taxonomies. International Journal of Cloud Computing (To appear).

    Google Scholar 

  10. Gao, Y., Guan, H., Qi, Z., Hou, Y., & Liu, L. (2013). A multi-objective ant colony system algorithm for virtual machine placement in cloud computing. Journal of Computer and System Sciences, 79, 1230–1242.

    Article  MathSciNet  MATH  Google Scholar 

  11. López-Pires, F., & Barán, B. (2013). Multi-objective virtual machine placement with service level agreement: A memetic algorithm approach. In Proceedings of the 2013 IEEE/ACM 6th International Conference on Utility and Cloud Computing (pp. 203–210). IEEE Computer Society.

    Google Scholar 

  12. Tomás, L., & Tordsson, J. (2013). Improving cloud infrastructure utilization through overbooking. In Proceedings of the 2013 ACM Cloud and Autonomic Computing Conference, CAC’13 (pp. 5:1–5:10). New York, NY, USA.

    Google Scholar 

  13. Beloglazov, A., Abawajy, J., & Buyya, R. (2012). Energy-aware resource allocation heuristics for efficient management of data centers for cloud computing. Future Generation Computer Systems, 28(5), 755–768.

    Article  Google Scholar 

  14. Shrivastava, V., Zerfos, P., Lee, K.-W., Jamjoom, H., Liu, Y.-H., & Banerjee, S. (2011). Application-aware virtual machine migration in data centers. In INFOCOM, 2011 Proceedings IEEE (pp. 66–70). IEEE.

    Google Scholar 

  15. Donoso, Y., Fabregat, R., Solano, F., Marzo, J.-L., & Barán, B. (2005). Generalized multiobjective multitree model for dynamic multicast groups. In 2005 IEEE International Conference on Communications, 2005. ICC 2005 (Vol. 1, pp. 148–152). IEEE.

    Google Scholar 

  16. Báez, M., Zárate, D., & Barán, B. (2007). Adaptive memetic algorithms for multi-objective optimization. In 2007 XXXIII Latin American Computing Conference (CLEI) (Vol. 2007).

    Google Scholar 

  17. Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. A. M. T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2), 182–197.

    Google Scholar 

  18. Coello Coello, C., Lamont, G. B., & Van Veldhuizen, D. A. (2007). Evolutionary algorithms for solving multi-objective problems. Springer.

    Google Scholar 

  19. Sun, M., Gu, W., Zhang, X., Shi, H., & Zhang, W. (2013). A matrix transformation algorithm for virtual machine placement in cloud. In 2013 12th IEEE International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom) (pp. 1778–1783). IEEE.

    Google Scholar 

  20. Anand, A., Lakshmi, J., & Nandy, S. K. (2013). Virtual machine placement optimization supporting performance SLAs. In 2013 IEEE 5th International Conference on Cloud Computing Technology and Science (CloudCom) (Vol. 1, pp. 298–305. IEEE.

    Google Scholar 

  21. Sato, K., Samejima, M., & Komoda, N. (2013). Dynamic optimization of virtual machine placement by resource usage prediction. In 2013 11th IEEE International Conference on Industrial Informatics (INDIN) (pp. 86–91). IEEE.

    Google Scholar 

  22. Shi, L., Butler, B., Botvich, D., & Jennings, B. (2013). Provisioning of requests for virtual machine sets with placement constraints in iaas clouds. In 2013 IFIP/IEEE International Symposium on Integrated Network Management (IM 2013) (pp. 499–505). IEEE.

    Google Scholar 

  23. Li, W., Tordsson, J., & Elmroth, E. (2011). Modeling for dynamic cloud scheduling via migration of virtual machines. In 2011 IEEE Third International Conference on Cloud Computing Technology and Science (CloudCom) (pp. 163–171). IEEE.

    Google Scholar 

  24. Beloglazov, A., & Buyya, R. (2012). Optimal online deterministic algorithms and adaptive heuristics for energy and performance efficient dynamic consolidation of virtual machines in cloud data centers. Concurrency and Computation: Practice and Experience, 24(13), 1397–1420.

    Article  Google Scholar 

  25. López-Pires, F., & Barán, B. (2017). Many-objective virtual machine placement. Journal of Grid Computing (In Review).

    Google Scholar 

  26. Tomás, L., & Tordsson, J. (2013). Improving cloud infrastructure utilization through overbooking. In Proceedings of the 2013 ACM Cloud and Autonomic Computing Conference (p. 5).

    Google Scholar 

  27. Svärd, P., Hudzia, B., Walsh, S., Tordsson, J., & Elmroth, E. (2015). Principles and performance characteristics of algorithms for live vm migration. ACM SIGOPS Operating Systems Review, 49(1), 142–155.

    Article  Google Scholar 

  28. Talavera, F., Crichigno, J., & Barán, B. (2005). Policies for dynamical multiobjective environment of multicast traffic engineering. In IEEE ICT.

    Google Scholar 

  29. Amazon Web Services (2015, June). Amazon ec2 instances. http://aws.amazon.com/ec2/instance-types/.

  30. Ortigoza, J., López-Pires, F., & Barán, B. (2016, April). A taxonomy on dynamic environments for provider-oriented virtual machine placement. In 2016 IEEE International Conference on Cloud Engineering (IC2E) (pp. 214–215).

    Google Scholar 

  31. Li, K., Wu, J., & Blaisse, A. (2013). Elasticity-aware virtual machine placement for cloud datacenters. In 2013 IEEE 2nd International Conference on Cloud Networking (CloudNet) (pp. 99–107). IEEE.

    Google Scholar 

  32. Wang, W., Chen, H., & Chen, X. (2012). An availability-aware virtual machine placement approach for dynamic scaling of cloud applications. In 2012 9th International Conference on Ubiquitous Intelligence & Computing and 9th International Conference on Autonomic & Trusted Computing (UIC/ATC) (pp. 509–516). IEEE.

    Google Scholar 

  33. Tchernykh, A., Schwiegelsohn, U., Alexandrov, V., & Talbi, E.-G. (2015). Towards understanding uncertainty in cloud computing resource provisioning. Procedia Computer Science, 51, 1772–1781.

    Article  Google Scholar 

  34. Mell, P., & Grance, T. (2009). The nist definition of cloud computing. National Institute of Standards and Technology, 53(6), 50.

    Google Scholar 

  35. López-Pires, F., Barán, B., Amarilla, A., Benítez, L., Ferreira, R., & Zalimben, S. (2016). An experimental comparison of algorithms for virtual machine placement considering many objectives. In 9th Latin America Networking Conference (LANC) (pp. 75–79).

    Google Scholar 

  36. Zheng, Q., Li, R., Li, X., Shah, N., Zhang, J., Tian, F., et al. (2015). Virtual machine consolidated placement based on multi-objective biogeography-based optimization. Future Generation Computer Systems.

    Google Scholar 

  37. Calcavecchia, N. M., Biran, O., Hadad, E., & Moatti, Y. (2012). Vm placement strategies for cloud scenarios. In 2012 IEEE 5th International Conference on Cloud Computing (CLOUD) (pp. 852–859). IEEE.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio López-Pires .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

López-Pires, F., Barán, B. (2017). Many-Objective Optimization for Virtual Machine Placement in Cloud Computing. In: Chaudhary, S., Somani, G., Buyya, R. (eds) Research Advances in Cloud Computing. Springer, Singapore. https://doi.org/10.1007/978-981-10-5026-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-5026-8_12

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-5025-1

  • Online ISBN: 978-981-10-5026-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics