Nothing Special   »   [go: up one dir, main page]

Skip to main content

Existence Results of a Generalized Mixed Exponential Type Vector Variational-Like Inequalities

  • Conference paper
  • First Online:
Mathematics and Computing (ICMC 2017)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 655))

Included in the following conference series:

  • 928 Accesses

Abstract

In this paper, we introduce a new generalized mixed exponential type vector variational-like inequality problems (GMEVVLIP) and \(\alpha \)-relaxed exponentially \((p,\eta )\)-monotone mapping. We prove the existence results of (GMEVVLIP) by utilizing the KKM technique and Nadlar’s results with \(\alpha \)-relaxed exponentially \((p,\eta )\)-monotone mapping in Euclidian spaces. The present work extends some corresponding results of (GMEVVLIP) [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Usman, F., Khan, S.A.: A generalized mixed vector variational-like inequality problem. Nonlinear Anal.: Theory Methods Appl. 71(11), 5354–5362 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Fang, Y.P., Huang, N.J.: Variational-like inequalities with generalized monotone mappings in Banach spaces. J. Optim. Theory Appl. 118(2), 327–338 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Huang, N.-J., Gao, C.-J.: Some generalized vector variational inequalities and complementarity problems for multivalued mappings. Appl. Math. Lett. 16(7), 1003–1010 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Khan, S.A., Khan, Q.H., Suhel, F.: Generalized vector mixed variational-like inequality problem without monotonicity. Thai J. Math. 10(2), 245–258 (2012)

    MathSciNet  MATH  Google Scholar 

  5. Lin, K.L., Yang, D.P., Yao, J.-C.: Generalized vector variational inequalities. J. Optim. Theory Appl. 92(1), 117–125 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  6. Zeng, L.-C., Yao, J.-C.: Existence of solutions of generalized vector variational inequalities in reflexive Banach spaces. J. Glob. Optim. 36(4), 483–497 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Jayswal, A., Choudhury, S., Verma, R.U.: Exponential type vector variational-like inequalities and vector optimization problems with exponential type invexities. J. Appl. Math. Comput. 45(1–2), 87–97 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Jayswal, A., Choudhury, S.: Exponential type vector variational-like inequalities and nonsmooth vector optimization problems. J. Appl. Math. Comput. 49(1–2), 127–143 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Wu, K.Q., Huang, N.J.: Vector variational-like inequalities with relaxed \(\eta \)- \(\alpha \) Pseudomonotone mappings in Banach spaces. J. Math. Inequal. 1, 281–290 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ceng, L.-C., Yao, J.-C.: On generalized variational-like inequalities with generalized monotone multivalued mappings. Appl. Math. Lett. 22(3), 428–434 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Plubtieng, S., Thammathiwat, T.: Existence of solutions of new generalized mixed vector variational-like inequalities in reflexive Banach spaces. J. Optim. Theory Appl. 162(2), 589–604 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fan, K.: A generalization of Tychonoff’s fixed point theorem. Math. Ann. 142, 305–310 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  13. Nadler, S.B.: Multi-valued contraction mappings. Pac. J. Math. 30(2), 475–488 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  14. Brouwer, L.: Zur invarianz des n-dimensional gebietes. Math. Ann. 71(3), 305–313 (1912)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. K. Mahato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Mahato, N.K., Mohapatra, R.N. (2017). Existence Results of a Generalized Mixed Exponential Type Vector Variational-Like Inequalities. In: Giri, D., Mohapatra, R., Begehr, H., Obaidat, M. (eds) Mathematics and Computing. ICMC 2017. Communications in Computer and Information Science, vol 655. Springer, Singapore. https://doi.org/10.1007/978-981-10-4642-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-4642-1_18

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-4641-4

  • Online ISBN: 978-981-10-4642-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics