Abstract
In this paper some Newton like methods for unconstrained optimization problem are restructured using q-calculus (quantum calculus). Two schemes are proposed, (1) q-Newton line search scheme, (2) a variant of q-Newton line search scheme. Global convergence of these schemes are discussed and numerical illustrations are provided.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abreu, L.: A q-sampling theorem related to the q-Hankel transform. Proc. Am. Math. Soc. 133(4), 1197–1203 (2005)
Aral, A., Gupta, V., Agarwal, R.P.: Applications of q-Calculus in Operator Theory. Springer, New York (2013)
Bangerezako, G.: Variational q-calculus. J. Math. Anal. Appl. 289(2), 650–665 (2004)
Bunch, J.R., Kaufman, L., Parlett, B.N.: Decomposition of a symmetric matrix. Numer. Math. 27(1), 95–109 (1976)
Duff, I.S., Reid, J.K.: The multifrontal solution of indefinite sparse symmetric linear. ACM Trans. Math. Softw. (TOMS) 9(3), 302–325 (1983)
Fourer, R., Mehrotra, S.: Solving symmetric indefinite systems in an interior-point method for linear programming. Math. Program. 62(1–3), 15–39 (1993)
Gauchman, H.: Integral inequalities in q-calculus. Comput. Math. Appl. 47(2), 281–300 (2004)
Golub, G.H., Van Loan, C.F.: Matrix Computations, vol. 3. JHU Press, Baltimore (2012)
Grünbaum, F.A., Haine, L.: The q-version of a theorem of bochner. J. Comput. Appl. Math. 68(1), 103–114 (1996)
Ismail, M.E., Stanton, D.: Applications of q-Taylor theorems. J. Comput. Appl. Math. 153(1), 259–272 (2003)
Jing, S.C., Fan, H.Y.: q-Taylor’s formula with its q-remainder. Commun. Theor. Phys. 23(1), 117 (1995)
Koornwinder, T.H., Swarttouw, R.F.: On q-analogues of the Fourier and Hankel transforms. Trans. Am. Math. Soc. 333(1), 445–461 (1992)
Nocedal, J., Wright, S.J.: Numerical Optimization. Springer Series in Operations Research and Financial Engineering, 2nd edn. Springer, New York (2006)
Rajkovic, P.M., Marinkovi, S.D., Stankovic, M.S.: Fractional integrals and derivatives in q-calculus. Appl. Anal. Discrete Math. 1(1), 311–323 (2007)
Rajkovic, P.M., Marinkovic, S.D., Stankovic, M.S.: On q-Newton Kantorovich method for solving systems of equations. Appl. Math. Comput. 168(2), 1432–1448 (2005)
Rajkovic, P.M., Stankovic, M.S., Marinkovic, S.D.: Mean value theorems in q-calculus. Matematicki Vesnik 54, 171–178 (2002)
Soterroni, A.C., Galski, R.L., Ramos, F.M.: The q-gradient vector for unconstrained continuous optimization problems. In: Hu, B., Morasch, K., Pickl, S., Siegle, M. (eds.) Operations Research Proceedings 2010, pp. 365–370. Springer, Heidelberg (2011). doi:10.1007/978-3-642-20009-0_58
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Chakraborty, S.K., Panda, G. (2017). Newton Like Line Search Method Using q-Calculus. In: Giri, D., Mohapatra, R., Begehr, H., Obaidat, M. (eds) Mathematics and Computing. ICMC 2017. Communications in Computer and Information Science, vol 655. Springer, Singapore. https://doi.org/10.1007/978-981-10-4642-1_17
Download citation
DOI: https://doi.org/10.1007/978-981-10-4642-1_17
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-10-4641-4
Online ISBN: 978-981-10-4642-1
eBook Packages: Computer ScienceComputer Science (R0)