Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Weighting Possibilistic Fuzzy C-Means Algorithm for Interval Granularity

  • Conference paper
  • First Online:
Computer Supported Cooperative Work and Social Computing (ChineseCSCW 2022)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1682))

  • 434 Accesses

Abstract

Granular clustering is an emerging branch in the field of clustering. However, the existing granular clustering algorithms are still immature in terms of weight setting of granular data and noise resistance. In this study, a weighting possibilistic fuzzy c-means algorithm for interval granularity (WPFCM-IG) is proposed. To begin with, a new weight setting method for interval granular data is given. The principle of justifiable granularity is used as the evaluation criterion of granular data, and a weight is assigned to each granular data from two perspectives of coverage and specificity to measure the quality of the granular data. In addition, the idea of possibilistic clustering is introduced, which is helpful to improve the noise resistance. And, with the proposed weights of interval granular data, the influence of data with smaller weights on the clustering results can be reduced during the clustering process. Based upon these ideas, the WPFCM-IG algorithm is put forward, and its core idea, formula derivation and implementation process are described. Finally, the performance of the proposed algorithm is verified by comparison experiments on the artificial and UCI datasets. The experimental results show that the WPFCM-IG algorithm is better than other advanced algorithms in this field in terms of reconstruction error. Next, the WPFCM-IG algorithm is smoother than other algorithms on the collaborative relationship curve between the fuzzy coefficient and the reconstruction error, so WPFCM-IG can better optimize the fuzzy coefficient.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Li, X.L., Zhang, H., Wang, R., Nie, F.P.: Multiview clustering: a scalable and parameter-free bipartite graph fusion method. IEEE Trans. Pattern Anal. Mach. Intell. 44(1), 330–344 (2022)

    Article  Google Scholar 

  2. Tang, Y.M., Pan, Z.F., Pedrycz, W., Ren, F.J., Song, X.C.: Viewpoint-based kernel fuzzy clustering with weight information granules. IEEE Trans. Emerg. Top. Comput. Intell. (2022). https://doi.org/10.1109/TETCI.2022.3201620

  3. Tang, Y.M., Ren, F.J., Pedrycz, W.: Fuzzy c-means clustering through SSIM and patch for image segmentation. Appl. Soft Comput. 87, 105928: 1–16 (2020)

    Google Scholar 

  4. Tang, Y.M., Hu, X.H., Pedrycz, W., Song, X.C.: Possibilistic fuzzy clustering with high-density viewpoint. Neurocomputing 329, 407–423 (2019)

    Article  Google Scholar 

  5. Tang, Y.M., Li, L., Liu, X.P.: State-of-the-art development of complex systems and their simulation methods. Complex Syst. Model. Simul. 1(4), 271–290 (2021)

    Article  Google Scholar 

  6. Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)

    Article  MATH  Google Scholar 

  7. Wang, X., Wang, Y., Wang, L.: Improving fuzzy c-means clustering based on feature-weight learning. Pattern Recogn. Lett. 25(10), 1123–1132 (2004)

    Article  Google Scholar 

  8. Dunn, J.C.: Well-separated clusters and optimal fuzzy partitions. J. Cybern. 4(1), 95–104 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Krishnapuram, R., Keller, J.M.: A possibilistic approach to clustering. IEEE Trans. Fuzzy Syst. 1(2), 98–110 (1993)

    Article  Google Scholar 

  10. Pal, N.R., Pal, K., Keller, J.M., et al.: A possibilistic fuzzy c-means clustering algorithm. IEEE Trans. Fuzzy Syst. 13(4), 517–530 (2005)

    Article  Google Scholar 

  11. Graves, D., Pedrycz, W.: Kernel-based fuzzy clustering and fuzzy clustering: a comparative experimental study. Fuzzy Sets Syst. 161(4), 522–543 (2010)

    Article  MathSciNet  Google Scholar 

  12. Zhou, J., Chen, L., Chen, C.L.: Fuzzy clustering with the entropy of attribute weights. Neurocomputing 19(8), 125–134 (2016)

    Article  Google Scholar 

  13. Schneider, A.: Weighted possibilistic c-means clustering algorithms. In: Proceedings of the Ninth IEEE International Conference on Fuzzy Systems, FUZZ, pp. 176–180. IEEE (2000)

    Google Scholar 

  14. Bahrampour, S., Moshiri, B., Salahshoor, K.: Weighted and constrained possibilistic c-means clustering for online fault detection and isolation. Appl. Intell. 35(2), 269–284 (2011)

    Article  Google Scholar 

  15. Bose, A., Mali, K.: Type-reduced vague possibilistic fuzzy clustering for medical images. Pattern Recogn. 112, 107784 (2021)

    Article  Google Scholar 

  16. Zadeh, L.A.: Toward a generalized theory of uncertainty (GTU)—an outline. Inf. Sci. 172(1), 1–40 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Pedrycz, W., Succi, G., Sillitti, A., Iljazi, J.: Data description: a gen-eral framework of information granules. Knowl.-Based Syst. 80, 98–108 (2015)

    Article  Google Scholar 

  18. Zhu, X.B., Pedrycz, W., Li, Z.W.: Granular data description: designing ellipsoidal information granules. IEEE Trans. Cybern. 47(12), 4475–4484 (2017)

    Article  Google Scholar 

  19. Ouyang, T.H., Pedrycz, W., Reyes-Galaviz, O.F., Pizzi, N.J.: Granular description of data structures: a two-phase design. IEEE Trans. Cybern. 51(4), 1902–1912 (2021)

    Article  Google Scholar 

  20. Zarandi, M.H.F., Razaee, Z.S.: A fuzzy clustering model for fuzzy data with outliers. Int. J. Fuzzy Syst. 1(2), 29–42 (2011)

    Google Scholar 

  21. Effati, S., Yazdi, H.S., Sharahi, A.J.: Fuzzy clustering algorithm for fuzzy data based on α–cuts. J. Intell. Fuzzy Syst. 24(3), 511–519 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Shen, Y.H., Pedrycz, W., Wang, X.M.: Clustering homogeneous granular data: formation and evaluation. IEEE Trans. Cybern. 49(4), 1391–1401 (2019)

    Article  Google Scholar 

  23. Asuncion, A., Newman, D.J.: UCI Machine Learning Repository. School of Information and Computer Science, University of California, Irvine, CA, USA (2007). http://archive.ics.usi.edu/ml/Datasets.html

  24. Pedrycz, W., Valente de Oliveira, J.: A development of fuzzy encoding and decoding through fuzzy clustering. IEEE Trans. Instrum. Measur. 57(4), 829–837 (2008). https://doi.org/10.1109/TIM.2007.913809

    Article  Google Scholar 

  25. Zhu, X.B., Pedrycz, W., Li, Z.W.: Granular encoders and decoders: a study in processing information granules. IEEE Trans. Fuzzy Syst. 25(5), 1115–1126 (2017)

    Article  Google Scholar 

  26. Tang, Y.M., Ren, F.J.: Fuzzy systems based on universal triple I method and their response functions. Int. J. Inf. Technol. Decis. Mak. 16(2), 443–471 (2017)

    Article  MathSciNet  Google Scholar 

  27. Tang, Y.M., Zhang, L., Bao, G.Q., et al.: Symmetric implicational algorithm derived from intuitionistic fuzzy entropy. Iranian J. Fuzzy Syst. 19(4), 27–44 (2022)

    MathSciNet  Google Scholar 

  28. Tang, Y.M., Pedrycz, W., Ren, F.J.: Granular symmetric implicational method. IEEE Trans. Emerg. Top. Comput. Intell. 6(3), 710–723 (2022)

    Article  Google Scholar 

  29. Tang, Y.M., Pedrycz, W.: Oscillation bound estimation of perturbations under Bandler-Kohout subproduct. IEEE Trans. Cybern. 52(7), 6269–6282 (2022)

    Article  Google Scholar 

Download references

Acknowledgment

This work has been supported by the National Natural Science Foundation of China (Nos. 62176083, 62176084, 61877016, and 61976078), the Key Research and Development Program of Anhui Province (No. 202004d07020004), the Natural Science Foundation of Anhui Province (No. 2108085MF203), and the Fundamental Research Funds for Central Universities of China (No. PA2021GDSK0092).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiming Tang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tang, Y., Xi, L., Wu, W., Wu, X., Li, S., Chen, R. (2023). A Weighting Possibilistic Fuzzy C-Means Algorithm for Interval Granularity. In: Sun, Y., et al. Computer Supported Cooperative Work and Social Computing. ChineseCSCW 2022. Communications in Computer and Information Science, vol 1682. Springer, Singapore. https://doi.org/10.1007/978-981-99-2385-4_26

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-2385-4_26

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-2384-7

  • Online ISBN: 978-981-99-2385-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics