Nothing Special   »   [go: up one dir, main page]

Skip to main content

Task Offloading and Resource Allocation with Privacy Constraints in End-Edge-Cloud Environment

  • Conference paper
  • First Online:
Computer Supported Cooperative Work and Social Computing (ChineseCSCW 2022)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1682))

Abstract

The end-edge-cloud architecture brings an efficient solution to the big data processing problem caused by massive IoT devices. The characteristics of this architecture, such as massive devices, heterogeneous resources, and complex layers, bring new challenges to privacy protection issues. This paper considers the cooperation among terminal devices, edge nodes, and remote clouds to solve the task scheduling problem with privacy constraints by optimizing the offloading decision and resource allocation. A heuristic privacy-aware task offloading and resource allocation algorithm is proposed to maximize the number of successful tasks, which offloads low-privacy and non-privacy tasks to find sub-optimal offloading decisions by offloading sequence generation rules and decision adjustment. Task scheduling algorithms are presented by communication and computing resource allocation strategies for low-privacy and non-privacy tasks. ANOVA technique is used to verify the performance of the proposed algorithm. The experimental results show that the proposed algorithm is superior to others in terms of the number of devices, the amount of different task data, and the proportion of privacy tasks at different levels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cohen, J.: Embedded speech recognition applications in mobile phones: status, trends, and challenges. In: IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 5352–5355. IEEE, Las Vegas, NV, USA (2008)

    Google Scholar 

  2. Kumar, K., Lu, Y.H.: Cloud computing for mobile users: can offloading computation save energy? Computer 43(4), 51–56 (2010)

    Article  Google Scholar 

  3. Soyata, T., et al.: Cloud-vision: real-time face recognition using a mobile-cloudlet-cloud acceleration architecture. In: IEEE Symposium on Computers and Communications (ISCC), pp. 59–66. IEEE, Cappadocia, Turkey (2012)

    Google Scholar 

  4. Guo, F., et al.: An efficient computation offloading management scheme in the densely deployed small cell networks with mobile edge computing. IEEE/ACM Trans. Network. 26(6), 2651–2664 (2018)

    Article  Google Scholar 

  5. Wang, C., et al.: Integration of networking, caching, and computing in wireless systems: a survey, some research issues, and challenges. IEEE Commun. Surv. Tutor. 20(1), 7–38 (2017)

    Article  Google Scholar 

  6. Khan, W.Z., et al: Edge computing: a survey. Future Gener. Comput. Syst. 97(AUG.), 219–235 (2019)

    Google Scholar 

  7. Pace, P., et al: An edge-based architecture to support efficient applications for healthcare industry 4.0. IEEE Trans. Indust. Inform. 15(1), 481–489 (2018)

    Google Scholar 

  8. Mora, H., et al.: Multilayer architecture model for mobile cloud computing paradigm. Complexity 2019, 1–13 (2019)

    Article  Google Scholar 

  9. Zhou, J., et al.: Research advances on privacy preserving in edge computing. J. Comput. Res. Develop. 57(10), 2027–2051 (2020)

    Google Scholar 

  10. Sonmez, C., Ozgovde, A., Ersoy, C.: Edgecloudsim: an environment for performance evaluation of edge computing systems. Trans. Emerg. Telecommun. Technol. 29(11), e3493 (2018)

    Article  Google Scholar 

  11. Mao, Y.Y., Zhang, J., Letaief, K.B.: Joint task offloading scheduling and transmit power allocation for mobile-edge computing systems. In: IEEE Wireless Communications and Networking Conference (WCNC), pp. 1–6. IEEE, San Francisco, CA, USA (2017)

    Google Scholar 

  12. Zhang, G.W., et al.: FEMTO: fair and energy-minimized task offloading for fog-enabled IoT networks. IEEE Internet Things J. 6(3), 4388–4400 (2018)

    Article  Google Scholar 

  13. Lyu, X., Tian, H.: Adaptive receding horizon offloading strategy under dynamic environment. IEEE Commun. Lett. 20(5), 878–881 (2016)

    Article  Google Scholar 

  14. Chen, M., Hao, Y.X.: Task offloading for mobile edge computing in software defined ultra-dense network. IEEE J. Sel. Areas Commun. 36(3), 587–597 (2018)

    Article  MathSciNet  Google Scholar 

  15. Zhang, Q., et al.: Dynamic task offloading and resource allocation for mobile-edge computing in dense cloud RAN. IEEE Internet Things J. 7(4), 3282–3299 (2021)

    Article  MathSciNet  Google Scholar 

  16. Yan, J., et al.: Optimal task offloading and resource allocation in mobile-edge computing with inter-user task dependency. IEEE Trans. Wireless Commun. 19(1), 235–250 (2019)

    Article  Google Scholar 

  17. Chen, X., et al.: Efficient multi-user computation offloading for mobile-edge cloud computing. IEEE/ACM Trans. Networking 24(5), 2795–2808 (2015)

    Article  Google Scholar 

  18. Chen, S.G., et al.: Efficient privacy preserving data collection and computation offloading for fog-assisted IoT. IEEE Trans. Sustain. Comput. 5(4), 526–540 (2020)

    Article  Google Scholar 

  19. Hwang, R.H., Hsueh, Y.L., Chung, H.W.: A novel time-obfuscated algorithm for trajectory privacy protection. IEEE Trans. Serv. Comput. 7(2), 126–139 (2013)

    Article  Google Scholar 

  20. Razaq, M.M., et al.: Privacy-aware collaborative task offloading in fog computing. IEEE Trans. Comput. Soc. Syst. 9(1), 88–96 (2022)

    Article  Google Scholar 

  21. Wang, T., et al.: A three-layer privacy preserving cloud storage scheme based on computational intelligence in fog computing. IEEE Trans. Emerg. Top. Comput. Intell. 2(1), 3–12 (2018)

    Article  Google Scholar 

  22. Lyu, X., et al.: Multiuser joint task offloading and resource optimization in proximate clouds. IEEE Trans. Veh. Technol. 66(4), 3435–3447 (2016)

    Article  MathSciNet  Google Scholar 

  23. Peng, K., Huang, H., Wan, S., Leung, V.C.M.: End-edge-cloud collaborative computation offloading for multiple mobile users in heterogeneous edge-server environment. Wireless Netw. 1–12 (2020). https://doi.org/10.1007/s11276-020-02385-1

  24. Fizza, K., et al: PASHE: Privacy aware scheduling in a heterogeneous fog environment. In: IEEE 6th International Conference on Future Internet of Things and Cloud (FiCloud), pp. 333–340. Barcelona, Spain (2018)

    Google Scholar 

Download references

Acknowledgment

This work was supported by the Key-Area Research and Development Program of Guangdong Province (No.2021B0101200003), the National Natural Science Foundation of China (Nos. 61872077 and 61832004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xia Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhu, X., Sun, W., Li, X. (2023). Task Offloading and Resource Allocation with Privacy Constraints in End-Edge-Cloud Environment. In: Sun, Y., et al. Computer Supported Cooperative Work and Social Computing. ChineseCSCW 2022. Communications in Computer and Information Science, vol 1682. Springer, Singapore. https://doi.org/10.1007/978-981-99-2385-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-2385-4_16

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-2384-7

  • Online ISBN: 978-981-99-2385-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics