Nothing Special   »   [go: up one dir, main page]

Skip to main content

Multi-user Service Placement in LEO Satellite Constellations

  • Conference paper
  • First Online:
Big Data Intelligence and Computing (DataCom 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13864))

Included in the following conference series:

  • 787 Accesses

Abstract

With the rapid development of the research of space-air-ground integrated network, the importance of studying low Earth orbit (LEO) satellite network has become increasingly prominent. One of the important research directions is to cope with the challenges caused by the high-speed movement of LEO satellites for service placement. In this paper, we study how to place the service instances on LEO satellite constellations effectively. First, we model a satellite-ground communication scenario, giving constraints on several service metrics such as communication delay, load, etc. Then, we propose an algorithm based on time-slice, transforming the original problem into a shortest path problem with a weighted directed graph. In accordance with the characteristics of satellite motion, we introduce the concept of the service duration window and propose a polynomial time complexity approximation algorithm. Finally, we construct the LEO48 satellite constellation for simulation. The results show that, compared with other algorithms, the performance of this algorithm is greatly improved.

Supported by the Fundamental Research Funds for the Central Universities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wang, C., Zhai, L., Xu, X.: Development and prospects of space-terrestrial integrated information network. Radio Commun. Technol. 46(05), 493–504 (2020)

    Google Scholar 

  2. Zhang, Z., Zhang, W., Tseng, F.H.: Satellite mobile edge computing: Improving QoS of high-speed satellite-terrestrial networks using edge computing techniques. IEEE Netw. 33(1), 70–76 (2019)

    Article  Google Scholar 

  3. Xie, R., Tang, Q., Wang, Q., Liu, X., Yu, F.R., Huang, T.: Satellite-terrestrial integrated edge computing networks: architecture, challenges, and open issues. IEEE Netw. 34(3), 224–231 (2020)

    Article  Google Scholar 

  4. Leopold, R.J.: The iridium communications systems. In: [Proceedings] Singapore ICCS/ISITA92, pp. 451–455. IEEE (1992)

    Google Scholar 

  5. Jian, Y.: Research on IP routing technology for LEO satellite constellation networks. Tsinghua University, Beijing (2010)

    Google Scholar 

  6. Ouyang, T., Zhou, Z., Chen, X.: Follow me at the edge: mobility-aware dynamic service placement for mobile edge computing. IEEE J. Sel. Areas Commun. 36(10), 2333–2345 (2018)

    Article  Google Scholar 

  7. Wang, S., Urgaonkar, R., He, T., Chan, K., Zafer, M., Leung, K.K.: Dynamic service placement for mobile micro-clouds with predicted future costs. IEEE Trans. Parallel Distrib. Syst. 28(4), 1002–1016 (2016)

    Article  Google Scholar 

  8. Maia, A.M., Ghamri-Doudane, Y., Vieira, D., de Castro, M.F.: A multi-objective service placement and load distribution in edge computing. In: 2019 IEEE Global Communications Conference (GLOBECOM), pp. 1–7. IEEE (2019)

    Google Scholar 

  9. Gao, X., Liu, R., Kaushik, A.: A distributed virtual network function placement approach in satellite edge and cloud computing. arXiv preprint arXiv:2104.02421 (2021)

  10. Gao, X., Liu, R., Kaushik, A.: Service chaining placement based on satellite mission planning in ground station networks. IEEE Trans. Netw. Serv. Manage. 18(3), 3049–3063 (2021)

    Article  Google Scholar 

  11. Guangman, L., Sultan, L., Shaodong, F.: Study of channel assignment scheme for LEO constellation communication system combining switching reserved channels and new call queuing. J. Commun. 27(9), 135–140 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lei Yan , Chao Wang or Qibo Sun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yan, L., Wang, C., Sun, Q. (2023). Multi-user Service Placement in LEO Satellite Constellations. In: Hsu, CH., Xu, M., Cao, H., Baghban, H., Shawkat Ali, A.B.M. (eds) Big Data Intelligence and Computing. DataCom 2022. Lecture Notes in Computer Science, vol 13864. Springer, Singapore. https://doi.org/10.1007/978-981-99-2233-8_34

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-2233-8_34

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-2232-1

  • Online ISBN: 978-981-99-2233-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics