Nothing Special   »   [go: up one dir, main page]

Skip to main content

Towards Hardware-Friendly and Robust Facial Landmark Detection Method

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2022)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1792))

Included in the following conference series:

Abstract

Facial Landmark Detection (FLD) plays an essential role in computer vision because it is the premise of many tasks such as face recognition and facial expression analysis. Although significant advancements have been achieved with the help of deep learning, the performance of FLD is still unsatisfactory due to the influence of occlusion, low illumination, and motion blur. Existing works are developed and implemented based on expensive computing GPUs, limiting their application. This paper proposes a hardware-friendly, fast, and high-performance FLD framework. We first utilize a lightweight CNN to extract its features given the face image. This procedure uses a multi-scale feature fusion strategy for better feature representation learning. We design a weighted model to guide the regression of other landmarks inspired by the spatial distribution of five key points on the face: the eyes, nose and mouth. Our proposed network can also be quantified and pruned for practical deployment running at 45 FPS on the ARM3288 chip. We collect and annotate a new dataset CTLM-100K, which contains 100K facial samples with various postures and lighting conditions. Extensive experiments on these three benchmark datasets all validated the effectiveness of our model.

Supported by The Major Key Project of PCL (PCL2021A06).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sun, Y., Wang, X., Tang, X.: Deep convolutional network cascade for facial point detection. In: CVPR, pp. 3476–3483 (2013)

    Google Scholar 

  2. Zhou, E., Fan, H., Cao, Z., Jiang, Y., Yin, Q.: Extensive facial landmark localization with coarse-to-fine convolutional network cascade. In: ICCV, pp. 386–391 (2013)

    Google Scholar 

  3. Zhang, Z., Luo, P., Loy, C.C., Tang, X.: Learning and transferring multi-task deep representation for face alignment. arXiv:1408.3967 (2014)

  4. Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. In: SPL, pp. 1499–1503 (2016)

    Google Scholar 

  5. Wu, Y., Hassner, T., Kim, K., Medioni, G., Natarajan, P.: Facial landmark detection with tweaked convolutional neural networks. In: PAMI, pp. 3067–3074 (2017)

    Google Scholar 

  6. Kowalski, M., Naruniec, J., Trzcinski, T.: Deep alignment network: a convolutional neural network for robust face alignment. In: CVPR, pp. 88–97 (2017)

    Google Scholar 

  7. Köstinger, M., Wohlhart, P., Roth, P.M., Bischof, H.: Annotated facial landmarks in the wild: a large-scale, real-world database for facial landmark localization. In: ICCV, pp. 2144–2151 (2011)

    Google Scholar 

  8. Huang, G.B., Mattar, M., Berg, T., Learned-Miller, E.: Labeled faces in the wild: a database for studying face recognition in unconstrained environments. In: Workshop on faces in ‘Real-Life’ Images: Detection, Alignment, and Recognition (2008)

    Google Scholar 

  9. Zhu, X., Ramanan, D.: Face detection, pose estimation, and landmark localization in the wild. In: CVPR, pp. 2879–2886 (2012)

    Google Scholar 

  10. Le, V., Brandt, J., Lin, Z., Bourdev, L., Huang, T.S.: Interactive facial feature localization. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7574, pp. 679–692. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33712-3_49

    Chapter  Google Scholar 

  11. Messer, K., Matas, J., Kittler, J., Luettin, J., Maitre, G.: XM2VTSDB: the extended M2VTS database. In: AVBPA, pp. 965–966 (1999)

    Google Scholar 

  12. Kelkboom, E.J.C., Gökberk, B., Kevenaar, T.A.M., Akkermans, A.H.M., van der Veen, M.: “3D Face’’: biometric template protection for 3D face recognition. In: Lee, S.-W., Li, S.Z. (eds.) ICB 2007. LNCS, vol. 4642, pp. 566–573. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74549-5_60

    Chapter  Google Scholar 

  13. Feng, Y., Wu, F., Shao, X., Wang, Y., Zhou, X.: Joint 3D face reconstruction and dense alignment with position map regression network. In: ECCV, pp. 534–551 (2018)

    Google Scholar 

  14. Yu, Z., Li, X., Zhao, G.: Remote photoplethysmograph signal measurement from facial videos using spatio-temporal networks. arXiv:1905.02419 (2019)

  15. Zhang, J., Shan, S., Kan, M., Chen, X.: Coarse-to-fine auto-encoder networks (CFAN) for real-time face alignment. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8690, pp. 1–16. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10605-2_1

    Chapter  Google Scholar 

  16. Xiao, S., Feng, J., Xing, J., Lai, H., Yan, S., Kassim, A.: Robust facial landmark detection via recurrent attentive-refinement networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 57–72. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_4

    Chapter  Google Scholar 

  17. Trigeorgis, G., Snape, P., Nicolaou, M.A., Antonakos, E., Zafeiriou, S.: Mnemonic descent method: a recurrent process applied for end-to-end face alignment. In: CVPR, pp. 4177–4187 (2016)

    Google Scholar 

  18. Cong, W., Zhao, S., Tian, H., Shen, J.: Improved face detection and alignment using cascade deep convolutional network. arXiv:1707.09364 (2017)

  19. Kumar, A., Chellappa, R.: Disentangling 3D pose in a dendritic CNN for unconstrained 2D face alignment. In: CVPR, pp. 430–439 (2018)

    Google Scholar 

  20. Peng, H., Yu, S.: A systematic IOU-related method: beyond simplified regression for better localization. In: TIP, pp. 5032–5044 (2021)

    Google Scholar 

  21. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556 (2014)

  22. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.-C.: MobileNetV2: inverted residuals and linear bottlenecks. In: CVPR, pp. 4510–4520 (2018)

    Google Scholar 

  23. Sagonas, C., Antonakos, E., Tzimiropoulos, G., Zafeiriou, S., Pantic, M.: 300 faces in-the-wild challenge: database and results. In: IVC, pp. 3–18 (2016)

    Google Scholar 

  24. Burgos-Artizzu, X.P., Perona, P., Dollár, P.: Robust face landmark estimation under occlusion. In: CVPR, pp. 1513–1520 (2013)

    Google Scholar 

  25. Kazemi, V., Sullivan, J.: One millisecond face alignment with an ensemble of regression trees. In: CVPR, pp. 1867–1874 (2014)

    Google Scholar 

  26. Ren, S., Cao, X., Wei, Y., Sun, J.: Face alignment at 3000 fps via regressing local binary features. In: CVPR, pp. 1685–1692 (2014)

    Google Scholar 

  27. Xiong, X., De la Torre, F.: Supervised descent method and its applications to face alignment. In: CVPR, pp. 532–539 (2013)

    Google Scholar 

  28. Zhu, S., Li, C., Loy, C.C., Tang, X.: Face alignment by coarse-to-fine shape searching. In: CVPR, pp. 4998–5006 (2015)

    Google Scholar 

  29. Yu, X., Huang, J., Zhang, S., Yan, W., Metaxas, D.N.: Pose-free facial landmark fitting via optimized part mixtures and cascaded deformable shape model. In: CVPR, pp. 1944–1951 (2013)

    Google Scholar 

  30. Zhu, S., Li, C., Loy, C.-C., Tang, X.: Unconstrained face alignment via cascaded compositional learning. In: CVPR, pp. 3409–3417 (2016)

    Google Scholar 

  31. Wei, S.-E., Ramakrishna, V., Kanade, T., Sheikh, Y.: Convolutional pose machines. In: CVPR, pp. 4724–4732 (2016)

    Google Scholar 

  32. Lv, J., Shao, X., Xing, J., Cheng, C., Zhou, X.: A deep regression architecture with two-stage re-initialization for high performance facial landmark detection. In: CVPR, pp. 3691–3700 (2017)

    Google Scholar 

  33. Dong, X., Yan, Y., Ouyang, W., Yang, Y.: Style aggregated network for facial landmark detection. In: CVPR, pp. 379–388 (2018)

    Google Scholar 

  34. Zhu, X., Lei, Z., Liu, X., Shi, H., Li, S.Z.: Face alignment across large poses: a 3D solution. In: CVPR, pp. 146–155 (2016)

    Google Scholar 

  35. Zhang, Z., Luo, P., Loy, C.C., Tang, X.: Facial landmark detection by deep multi-task learning. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8694, pp. 94–108. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10599-4_7

    Chapter  Google Scholar 

  36. Wu, W., Qian, C., Yang, S., Wang, Q., Cai, Y., Zhou, Q.: Look at boundary: a boundary-aware face alignment algorithm. In: CVPR, pp. 2129–2138 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XinBei Bai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xie, L., Hu, M., Bai, X., Huang, W. (2023). Towards Hardware-Friendly and Robust Facial Landmark Detection Method. In: Tanveer, M., Agarwal, S., Ozawa, S., Ekbal, A., Jatowt, A. (eds) Neural Information Processing. ICONIP 2022. Communications in Computer and Information Science, vol 1792. Springer, Singapore. https://doi.org/10.1007/978-981-99-1642-9_37

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-1642-9_37

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-1641-2

  • Online ISBN: 978-981-99-1642-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics