Abstract
Facial Landmark Detection (FLD) plays an essential role in computer vision because it is the premise of many tasks such as face recognition and facial expression analysis. Although significant advancements have been achieved with the help of deep learning, the performance of FLD is still unsatisfactory due to the influence of occlusion, low illumination, and motion blur. Existing works are developed and implemented based on expensive computing GPUs, limiting their application. This paper proposes a hardware-friendly, fast, and high-performance FLD framework. We first utilize a lightweight CNN to extract its features given the face image. This procedure uses a multi-scale feature fusion strategy for better feature representation learning. We design a weighted model to guide the regression of other landmarks inspired by the spatial distribution of five key points on the face: the eyes, nose and mouth. Our proposed network can also be quantified and pruned for practical deployment running at 45 FPS on the ARM3288 chip. We collect and annotate a new dataset CTLM-100K, which contains 100K facial samples with various postures and lighting conditions. Extensive experiments on these three benchmark datasets all validated the effectiveness of our model.
Supported by The Major Key Project of PCL (PCL2021A06).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Sun, Y., Wang, X., Tang, X.: Deep convolutional network cascade for facial point detection. In: CVPR, pp. 3476–3483 (2013)
Zhou, E., Fan, H., Cao, Z., Jiang, Y., Yin, Q.: Extensive facial landmark localization with coarse-to-fine convolutional network cascade. In: ICCV, pp. 386–391 (2013)
Zhang, Z., Luo, P., Loy, C.C., Tang, X.: Learning and transferring multi-task deep representation for face alignment. arXiv:1408.3967 (2014)
Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. In: SPL, pp. 1499–1503 (2016)
Wu, Y., Hassner, T., Kim, K., Medioni, G., Natarajan, P.: Facial landmark detection with tweaked convolutional neural networks. In: PAMI, pp. 3067–3074 (2017)
Kowalski, M., Naruniec, J., Trzcinski, T.: Deep alignment network: a convolutional neural network for robust face alignment. In: CVPR, pp. 88–97 (2017)
Köstinger, M., Wohlhart, P., Roth, P.M., Bischof, H.: Annotated facial landmarks in the wild: a large-scale, real-world database for facial landmark localization. In: ICCV, pp. 2144–2151 (2011)
Huang, G.B., Mattar, M., Berg, T., Learned-Miller, E.: Labeled faces in the wild: a database for studying face recognition in unconstrained environments. In: Workshop on faces in ‘Real-Life’ Images: Detection, Alignment, and Recognition (2008)
Zhu, X., Ramanan, D.: Face detection, pose estimation, and landmark localization in the wild. In: CVPR, pp. 2879–2886 (2012)
Le, V., Brandt, J., Lin, Z., Bourdev, L., Huang, T.S.: Interactive facial feature localization. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7574, pp. 679–692. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33712-3_49
Messer, K., Matas, J., Kittler, J., Luettin, J., Maitre, G.: XM2VTSDB: the extended M2VTS database. In: AVBPA, pp. 965–966 (1999)
Kelkboom, E.J.C., Gökberk, B., Kevenaar, T.A.M., Akkermans, A.H.M., van der Veen, M.: “3D Face’’: biometric template protection for 3D face recognition. In: Lee, S.-W., Li, S.Z. (eds.) ICB 2007. LNCS, vol. 4642, pp. 566–573. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74549-5_60
Feng, Y., Wu, F., Shao, X., Wang, Y., Zhou, X.: Joint 3D face reconstruction and dense alignment with position map regression network. In: ECCV, pp. 534–551 (2018)
Yu, Z., Li, X., Zhao, G.: Remote photoplethysmograph signal measurement from facial videos using spatio-temporal networks. arXiv:1905.02419 (2019)
Zhang, J., Shan, S., Kan, M., Chen, X.: Coarse-to-fine auto-encoder networks (CFAN) for real-time face alignment. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8690, pp. 1–16. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10605-2_1
Xiao, S., Feng, J., Xing, J., Lai, H., Yan, S., Kassim, A.: Robust facial landmark detection via recurrent attentive-refinement networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 57–72. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_4
Trigeorgis, G., Snape, P., Nicolaou, M.A., Antonakos, E., Zafeiriou, S.: Mnemonic descent method: a recurrent process applied for end-to-end face alignment. In: CVPR, pp. 4177–4187 (2016)
Cong, W., Zhao, S., Tian, H., Shen, J.: Improved face detection and alignment using cascade deep convolutional network. arXiv:1707.09364 (2017)
Kumar, A., Chellappa, R.: Disentangling 3D pose in a dendritic CNN for unconstrained 2D face alignment. In: CVPR, pp. 430–439 (2018)
Peng, H., Yu, S.: A systematic IOU-related method: beyond simplified regression for better localization. In: TIP, pp. 5032–5044 (2021)
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556 (2014)
Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.-C.: MobileNetV2: inverted residuals and linear bottlenecks. In: CVPR, pp. 4510–4520 (2018)
Sagonas, C., Antonakos, E., Tzimiropoulos, G., Zafeiriou, S., Pantic, M.: 300 faces in-the-wild challenge: database and results. In: IVC, pp. 3–18 (2016)
Burgos-Artizzu, X.P., Perona, P., Dollár, P.: Robust face landmark estimation under occlusion. In: CVPR, pp. 1513–1520 (2013)
Kazemi, V., Sullivan, J.: One millisecond face alignment with an ensemble of regression trees. In: CVPR, pp. 1867–1874 (2014)
Ren, S., Cao, X., Wei, Y., Sun, J.: Face alignment at 3000 fps via regressing local binary features. In: CVPR, pp. 1685–1692 (2014)
Xiong, X., De la Torre, F.: Supervised descent method and its applications to face alignment. In: CVPR, pp. 532–539 (2013)
Zhu, S., Li, C., Loy, C.C., Tang, X.: Face alignment by coarse-to-fine shape searching. In: CVPR, pp. 4998–5006 (2015)
Yu, X., Huang, J., Zhang, S., Yan, W., Metaxas, D.N.: Pose-free facial landmark fitting via optimized part mixtures and cascaded deformable shape model. In: CVPR, pp. 1944–1951 (2013)
Zhu, S., Li, C., Loy, C.-C., Tang, X.: Unconstrained face alignment via cascaded compositional learning. In: CVPR, pp. 3409–3417 (2016)
Wei, S.-E., Ramakrishna, V., Kanade, T., Sheikh, Y.: Convolutional pose machines. In: CVPR, pp. 4724–4732 (2016)
Lv, J., Shao, X., Xing, J., Cheng, C., Zhou, X.: A deep regression architecture with two-stage re-initialization for high performance facial landmark detection. In: CVPR, pp. 3691–3700 (2017)
Dong, X., Yan, Y., Ouyang, W., Yang, Y.: Style aggregated network for facial landmark detection. In: CVPR, pp. 379–388 (2018)
Zhu, X., Lei, Z., Liu, X., Shi, H., Li, S.Z.: Face alignment across large poses: a 3D solution. In: CVPR, pp. 146–155 (2016)
Zhang, Z., Luo, P., Loy, C.C., Tang, X.: Facial landmark detection by deep multi-task learning. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8694, pp. 94–108. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10599-4_7
Wu, W., Qian, C., Yang, S., Wang, Q., Cai, Y., Zhou, Q.: Look at boundary: a boundary-aware face alignment algorithm. In: CVPR, pp. 2129–2138 (2018)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Xie, L., Hu, M., Bai, X., Huang, W. (2023). Towards Hardware-Friendly and Robust Facial Landmark Detection Method. In: Tanveer, M., Agarwal, S., Ozawa, S., Ekbal, A., Jatowt, A. (eds) Neural Information Processing. ICONIP 2022. Communications in Computer and Information Science, vol 1792. Springer, Singapore. https://doi.org/10.1007/978-981-99-1642-9_37
Download citation
DOI: https://doi.org/10.1007/978-981-99-1642-9_37
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-99-1641-2
Online ISBN: 978-981-99-1642-9
eBook Packages: Computer ScienceComputer Science (R0)